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For two sets A,B in an abelian group G, we denote

A± B = {a± b : a ∈ A,b ∈ B}.

and denote the k -fold sumset by

kA = A + · · ·+ A (k times).

If A ⊂ G, we denote #{a : a ∈ A} by |A|.

By the density of A in G, we mean |A||G| .
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Essential Components in N

Let N be the set of non-negative integers. For A ⊂ N, we let

A(n) = #{a : a ∈ A,1 ≤ a ≤ n},

be the counting function of A.

The Schnirelmann density σ(A) is defined by

σ(A) = inf
n≥1

A(n)
n

.

Theorem (Schnirelmann’s inequality, 1930)

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B), if 0 ∈ A ∪ B.

Schnirelmann proved that cP = N, where P = {primes} ∪ {0,1} and
c > 0 is some constant, which was the first unconditional result on the
Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 3 / 23



Essential Components in N

Let N be the set of non-negative integers. For A ⊂ N, we let

A(n) = #{a : a ∈ A,1 ≤ a ≤ n},

be the counting function of A.

The Schnirelmann density σ(A) is defined by

σ(A) = inf
n≥1

A(n)
n

.

Theorem (Schnirelmann’s inequality, 1930)

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B), if 0 ∈ A ∪ B.

Schnirelmann proved that cP = N, where P = {primes} ∪ {0,1} and
c > 0 is some constant, which was the first unconditional result on the
Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 3 / 23



Essential Components in N

Let N be the set of non-negative integers. For A ⊂ N, we let

A(n) = #{a : a ∈ A,1 ≤ a ≤ n},

be the counting function of A.

The Schnirelmann density σ(A) is defined by

σ(A) = inf
n≥1

A(n)
n

.

Theorem (Schnirelmann’s inequality, 1930)

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B), if 0 ∈ A ∪ B.

Schnirelmann proved that cP = N, where P = {primes} ∪ {0,1} and
c > 0 is some constant, which was the first unconditional result on the
Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 3 / 23



Essential Components in N

Let N be the set of non-negative integers. For A ⊂ N, we let

A(n) = #{a : a ∈ A,1 ≤ a ≤ n},

be the counting function of A.

The Schnirelmann density σ(A) is defined by

σ(A) = inf
n≥1

A(n)
n

.

Theorem (Schnirelmann’s inequality, 1930)

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B), if 0 ∈ A ∪ B.

Schnirelmann proved that cP = N, where P = {primes} ∪ {0,1} and
c > 0 is some constant, which was the first unconditional result on the
Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 3 / 23



Essential Components in N

Let N be the set of non-negative integers. For A ⊂ N, we let

A(n) = #{a : a ∈ A,1 ≤ a ≤ n},

be the counting function of A.

The Schnirelmann density σ(A) is defined by

σ(A) = inf
n≥1

A(n)
n

.

Theorem (Schnirelmann’s inequality, 1930)

σ(A + B) ≥ σ(A) + σ(B)− σ(A)σ(B), if 0 ∈ A ∪ B.

Schnirelmann proved that cP = N, where P = {primes} ∪ {0,1} and
c > 0 is some constant, which was the first unconditional result on the
Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 3 / 23



Essential Components in N

Schnirelmann Density:

σ(A) = inf
n≥1

A(n)
n

A set H ⊂ N is called a Schnirelmann essential component if

σ(A + H) > σ(A)

whenever 0 < σ(A) < 1.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 4 / 23



Essential Components in N

Schnirelmann Density:

σ(A) = inf
n≥1

A(n)
n

A set H ⊂ N is called a Schnirelmann essential component if

σ(A + H) > σ(A)

whenever 0 < σ(A) < 1.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 4 / 23



If A ⊂ N, the lower asymptotic density d(A) is defined by

d(A) = lim inf
n→∞

A(n)
n

.

A set H ⊂ N is called an asymptotic essential component if

d(A + H) > d(A)

whenever 0 < d(A) < 1.

Theorem (Plünnecke, 1969)
A set of integers is a Schnirelmann essential component if and only if it
is an asymptotic essential component and it contains {0,1}.
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Schnirelmann’s inequality

σ(A + B) ≥ σ(A) + σ(B)(1− σ(A))

implies that any set with a positive Schnirelmann density is an
essential component.

Khinchin (1933) gave the first example of an essential component
with density 0, which is the set of squares.

Erdős (1936) proved that every basis is an essential component.

A set H is an additive basis of order k if kH = N for some k ∈ Z+.

If H is an additive basis of order k , then H(n)� n1/k .
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Q: If H is an essential component, then how small can H(n) be?

Theorem (Linnik, 1942)

There is an essential component satisfying H(n) = O(exp(log
9
10 n)),

which hence is not a basis.

Theorem (Wirsing, 1976)
For every ε > 0 there exists an essential component H with
H(n) = O(exp(ε

√
log n log log n)).
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Q: If H is an essential component, then how small can H(n) be?

Theorem (Ruzsa, 1984)
For every c > 0 there exists an essential component H with
H(n) = O((log n)1+c).

Ruzsa’s construction is probabilistic.

Theorem (Ruzsa, 1984)

Suppose H ⊂ N such that for any ε > 0, H(n) ≤ (log n)1+ε holds
infinitely often. Then there exists a set A ⊂ N such that

0 < d(A) = d(A + H) < 1.

Consequently, there does not exists an essential component H with
H(n)� (log n)1+o(1).
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Essential components in Fp[t ]

Define G := Fp[t ]. For A ⊂ G, let

An = {a : a ∈ A, deg(a) < n}.

In particular, Gn = {g : deg(g) < n}.

The lower asymptotic density d(A) is defined by

d(A) = lim inf
n→∞

|An|
pn .

A set H ⊂ G = Fp[t ] is an essential component if

lim inf
n→∞

|Hn + An|
pn > d(A),

whenever 0 < d(A) < 1.
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• H is an essential component in N if

d(A + H) > d(A), whenever 0 < d(A) < 1.

• H ⊂ G = Fp[t ] is an essential component if

lim inf
n→∞

|Hn + An|
pn > d(A), whenever 0 < d(A) < 1.

Why not d(A + H) > d(A)?

Note Fp[t ] is a group, in general we have Hn + An ( (H + A)n.

In particular, if H is infinite, there exists a set A with d(A) = 0 s.t.

A + H = G, hence d(A + H) = lim inf
n→∞

|(A + H)n|
pn = 1,

which is not interesting.
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Essential components in Fp[t ]

Theorem (Erdős, 1936)
If kH = N for some positive integer k, then for all n,

(A + H)(n) ≥ A(n) + A(n)
2k

(
1− A(n)

n

)
.

Burke proved the following analog of Erdős’ theorem in Fp[t ].

Theorem (Burke, 1984)
If H ⊂ Fp[t ] = G and there exists a positive integer k s.t. kHn = Gn for
all n ∈ N, then

|An + Hn| ≥ |An|+ |An|
k

(
1− |An|

pn

)
holds for all n ∈ N.
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If kH = N for some positive integer k, then for all n,

(A + H)(n) ≥ A(n) + A(n)
2k

(
1− A(n)

n

)
.

Burke proved the following analog of Erdős’ theorem in Fp[t ].
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Theorem (Ruzsa, 1984)
For every c > 0 there exists an essential component H ⊂ N with
H(n) = O((log n)1+c).

We prove the following analog of Ruzsa’s theorem.

Theorem 1 (G.-Lê)
For every c > 0, there exists an essential component H ⊂ Fp[t ] such
that |Hn| = Op(n1+c).

Our method is also probabilistic. We are not able to give an explicit
essential component H with counting function |Hn| = Op(n1+c) for
small c.
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Theorem (Ruzsa, 1984)

Suppose H ⊂ N such that for any ε > 0, H(n) ≤ (log n)1+ε holds
infinitely often. Then there exists a set A ⊂ N such that

0 < d(A) = d(A + H) < 1.

Theorem 2 (G.-Lê)

Suppose H ⊂ Fp[t ] such that for any ε > 0, |Hn| < n1+ε holds infinitely
often. Then for any 0 < δ < 1, there exists a set A ⊂ Fp[t ] such that

δ = d(A) = lim inf
n→∞

|An + Hn|
pn .
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• Our theorem is more precise than Ruzsa’s in N. d(A) can be any
prescribed number.

• Our proof is not identical to Ruzsa’s, since G is a group but N is a
semi-group. The group structure simplifies some calculation, but it
causes extra difficulties.

One difficulty:

For a,b ∈ N, we always have a + b ≥ max{a,b}.

However, for f ,g ∈ Fp[t ], deg(f + g) could be any integer ≤ deg(f ).
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Explicit examples of essential components

Theorem (Wirsing, 1976)
For every c > 0 there exists an essential component H ⊂ N with
H(n) = O(exp(c

√
log n log log n)).

For f =
∑n−1

j=0 aj t j , we define supp(f ) = {j : aj 6= 0}.

Theorem 3 (G.-Lê)

Let 1n = 1 + t + · · · tn−1 and 0 < c < 1 be a real number. Then

H = ∪∞n=1{f + 1n : |supp(f )| ≤ c
√

n}

is an essential component of Fp[t ] and |Hn| = exp
(
Op(c

√
n log n)

)
.
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Essential components in Gn

Now we prove that for a large fixed n, there exists an essential
component K in Gn such that |K | ≤ 25n log p and for any A ⊂ Gn,

|K + A| ≥ |A|+ 5
9
|A|
(

1− |A|
pn

)
.
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A Fourier Analysis Tool:

Let ep(x) = e2πix/p. Let K ⊂ Gn and (ck )k∈K be arbitrary complex
numbers s. t.

∑
k∈K ck = 1. Define

ξ(x) =
∑
k∈K

ckep(k · x)

for x ∈ Gn.

If there exists η ≥ 0 s.t. |ξ(x)| ≤ η for all x ∈ Gn \ {0}, then for any
A ⊂ Gn, we have

|A + K | ≥ |A|+ (1− η2)|A|
(

1− |A|
pn

)
.

Proof. Cauchy-Schwarz’s inequality and Plancherel’s identity.
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The Idea of the Proof in Gn

Recall that G = Fp[t ]. Let ep(x) = e2πix/p.

Let K ⊂ Gn and (ck )k∈K be arbitrary complex numbers s. t.∑
k∈K ck = 1. Define

ξ(x) =
∑
k∈K

ckep(k · x)

for x ∈ Gn.

If there exists η ≥ 0 s.t. |ξ(x)| ≤ η for all x ∈ Gn \ {0}, then for any
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Construction of the set K

Let {Xk}k∈Gn be a set of independent Bernoulli random variables s.t.

P(Xk = 1) =
αn
|Gn|

, and P(Xk = 0) = 1− αn
|Gn|

,

where α is a bounded number that will be determined later.

Define
K := {k ∈ Gn : Xk = 1}.

In a high probability, K is the set we need.
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After some standard calculation and using Chebyshev’s inequality, we
obtain that for any ε > 0

P(||K | − αn| ≥ εn) < α

ε2n
→ 0 as n→∞. (1)

For x ∈ Gn \ {0}, let

r(x) :=
∑

k∈Gn

Xk ep (k · x) =
∑
k∈K

ep (k · x).

One can calculate that

P(max
x 6=0
|r(x)| ≥ αn/2) ≤ p−n/9 → 0 as n→∞. (2)
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Goal: Find a sequence of complex number (ck )k∈K with
∑

k∈K ck = 1
such that

max
x 6=0
|ξ(x)| =

∣∣∣∣∣∑
k∈K

ckep(k · t)

∣∣∣∣∣ ≤ η < 1. (3)

Let
ck =

Xk∑
k∈Gn

Xk
=

Xk

|K |
.

By (1) and (2), we can see that

P
(
max
x 6=0
|ξ(x)| ≥ α

2(α− ε)

)
<

α

ε2n
+

1
pn/9 → 0 as n→∞.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 21 / 23



Goal: Find a sequence of complex number (ck )k∈K with
∑

k∈K ck = 1
such that

max
x 6=0
|ξ(x)| =

∣∣∣∣∣∑
k∈K

ckep(k · t)

∣∣∣∣∣ ≤ η < 1. (3)

Let
ck =

Xk∑
k∈Gn

Xk
=

Xk

|K |
.

By (1) and (2), we can see that

P
(
max
x 6=0
|ξ(x)| ≥ α

2(α− ε)

)
<

α

ε2n
+

1
pn/9 → 0 as n→∞.

Zhenchao Ge & Thái Hoàng Lê Essential Components 7th Discrete Math Workshop 21 / 23



In particular, if take α = 20 log p and let ε = 5 log p, then

P
(
max
x 6=0
|ξ(x)| < 2

3

)
> 1− 1

pn/9 −
4

5n log p
→ 1, as n→∞.

Therefore, in a high probably, K = {k : Xk = 1} is an essential
component in Gn with |K | ≤ 25n log p. �

Summary:

The key of the proof is to find ck s.t. |
∑

k∈K ckep(x · k)| is
uniformly small for all non-zero x .

Following this idea, we can prove the existence of an essential
component in G, but using more complicated weight functions ck .

Note that for a fixed large n, there exists an essential component
Hn ⊂ Gn s.t. |Hn| = Op(n). However, in G, there is no essential
component H ⊂ G s.t. |Hn| = Op(n1+o(1)).
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Thank You!
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