Essential Components in $\mathbb{F}_{p}[t]$

Zhenchao Ge & Thái Hoàng Lê

University of Mississippi

Oct. 26-27, 2019

7th annual Mississippi Discrete Math Workshop

Zhenchao Ge & Thái Hoàng Lê

4 E 5

For two sets A, B in an abelian group G, we denote

$$A \pm B = \{a \pm b : a \in A, b \in B\}.$$

and denote the k-fold sumset by

$$kA = A + \cdots + A$$
 (k times).

★ ∃ >

For two sets A, B in an abelian group G, we denote

$$A \pm B = \{a \pm b : a \in A, b \in B\}.$$

and denote the k-fold sumset by

$$kA = A + \cdots + A$$
 (k times).

If $A \subset G$, we denote $\#\{a : a \in A\}$ by |A|.

For two sets A, B in an abelian group G, we denote

$$A \pm B = \{a \pm b : a \in A, b \in B\}.$$

and denote the k-fold sumset by

$$kA = A + \cdots + A$$
 (k times).

If
$$A \subset G$$
, we denote $\#\{a : a \in A\}$ by $|A|$.

By the *density* of A in G, we mean $\frac{|A|}{|G|}$.

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$A(n) = \#\{a : a \in A, 1 \le a \le n\},$$

be the counting function of A.

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$A(n) = \#\{a : a \in A, 1 \le a \le n\},\$$

be the counting function of A.

The Schnirelmann density $\sigma(A)$ is defined by

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}.$$

A D b 4 A b

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$A(n) = \#\{a : a \in A, 1 \le a \le n\},\$$

be the counting function of A.

The Schnirelmann density $\sigma(A)$ is defined by

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}$$

Theorem (Schnirelmann's inequality, 1930)

 $\sigma(\mathbf{A} + \mathbf{B}) \ge \sigma(\mathbf{A}) + \sigma(\mathbf{B}) - \sigma(\mathbf{A})\sigma(\mathbf{B}), \quad \text{if } \mathbf{0} \in \mathbf{A} \cup \mathbf{B}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$A(n) = \#\{a : a \in A, 1 \le a \le n\},\$$

be the counting function of A.

The Schnirelmann density $\sigma(A)$ is defined by

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}$$

Theorem (Schnirelmann's inequality, 1930)

 $\sigma(\mathbf{A} + \mathbf{B}) \ge \sigma(\mathbf{A}) + \sigma(\mathbf{B}) - \sigma(\mathbf{A})\sigma(\mathbf{B}), \quad \text{if } \mathbf{0} \in \mathbf{A} \cup \mathbf{B}.$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$A(n) = \#\{a : a \in A, 1 \le a \le n\},\$$

be the counting function of A.

The Schnirelmann density $\sigma(A)$ is defined by

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}$$

Theorem (Schnirelmann's inequality, 1930)

 $\sigma(\mathbf{A} + \mathbf{B}) \ge \sigma(\mathbf{A}) + \sigma(\mathbf{B}) - \sigma(\mathbf{A})\sigma(\mathbf{B}), \qquad \text{if } \mathbf{0} \in \mathbf{A} \cup \mathbf{B}.$

Schnirelmann proved that $cP = \mathbb{N}$, where $P = \{\text{primes}\} \cup \{0, 1\}$ and c > 0 is some constant, which was the first unconditional result on the Goldbach conjecture.

Zhenchao Ge & Thái Hoàng Lê

Schnirelmann Density:

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}$$

크

Schnirelmann Density:

$$\sigma(\mathbf{A}) = \inf_{n \ge 1} \frac{\mathbf{A}(n)}{n}$$

A set $H \subset \mathbb{N}$ is called a Schnirelmann essential component if

$$\sigma(\boldsymbol{A} + \boldsymbol{H}) > \sigma(\boldsymbol{A})$$

whenever $0 < \sigma(A) < 1$.

If $A \subset \mathbb{N}$, the *lower asymptotic density* $\underline{d}(A)$ is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{A(n)}{n}$$

A set $H \subset \mathbb{N}$ is called an *asymptotic essential component* if

$$\underline{d}(A+H) > \underline{d}(A)$$

whenever $0 < \underline{d}(A) < 1$.

If $A \subset \mathbb{N}$, the *lower asymptotic density* $\underline{d}(A)$ is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{A(n)}{n}$$

A set $H \subset \mathbb{N}$ is called an *asymptotic essential component* if

$$\underline{d}(A+H) > \underline{d}(A)$$

whenever $0 < \underline{d}(A) < 1$.

Theorem (Plünnecke, 1969)

A set of integers is a Schnirelmann essential component if and only if it is an asymptotic essential component and it contains {0,1}.

Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

• Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

• Khinchin (1933) gave the first example of an essential component with density 0, which is the set of squares.

• = • •

• Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

• Khinchin (1933) gave the first example of an essential component with density 0, which is the set of squares.

• = • •

Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0, which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set *H* is an additive basis of order *k* if $kH = \mathbb{N}$ for some $k \in \mathbb{Z}^+$.

Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0, which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set *H* is an additive basis of order *k* if $kH = \mathbb{N}$ for some $k \in \mathbb{Z}^+$.

• Schnirelmann's inequality

$$\sigma(\mathbf{A} + \mathbf{B}) \geq \sigma(\mathbf{A}) + \sigma(\mathbf{B})(1 - \sigma(\mathbf{A}))$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0, which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set *H* is an additive basis of order *k* if $kH = \mathbb{N}$ for some $k \in \mathbb{Z}^+$.

If *H* is an additive basis of order *k*, then $H(n) \gg n^{1/k}$.

不同 いんきいんき

Zhenchao Ge & Thái Hoàng Lê

Essential Components

7th Discrete Math Workshop 7/23

э

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n) = O(\exp(\log^{\frac{9}{10}} n))$, which hence is not a basis.

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n) = O(\exp(\log^{\frac{9}{10}} n))$, which hence is not a basis.

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n) = O(\exp(\log^{\frac{y}{10}} n))$, which hence is not a basis.

Theorem (Wirsing, 1976)

For every $\varepsilon > 0$ there exists an essential component H with $H(n) = O(\exp(\varepsilon \sqrt{\log n} \log \log n)).$

Zhenchao Ge & Thái Hoàng Lê

Essential Components

Zhenchao Ge & Thái Hoàng Lê

Essential Components

7th Discrete Math Workshop 8/23

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n) = O((\log n)^{1+c})$.

A D b 4 A b

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n) = O((\log n)^{1+c})$.

A D b 4 A b

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n) = O((\log n)^{1+c})$.

Ruzsa's construction is probabilistic.

4 1 1 1 4

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n) = O((\log n)^{1+c})$.

Ruzsa's construction is probabilistic.

Theorem (Ruzsa, 1984)

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon > 0$, $H(n) \leq (\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$0 < \underline{d}(A) = \underline{d}(A+H) < 1.$$

Consequently, there does not exists an essential component H with $H(n) \ll (\log n)^{1+o(1)}$.

Essential components in $\mathbb{F}_{p}[t]$

Define $G := \mathbb{F}_{p}[t]$. For $A \subset G$, let

$$A_n = \{a : a \in A, \deg(a) < n\}.$$

In particular, $G_n = \{g : \deg(g) < n\}.$

Essential components in $\mathbb{F}_{p}[t]$

Define $G := \mathbb{F}_{p}[t]$. For $A \subset G$, let

$$A_n = \{a : a \in A, \deg(a) < n\}.$$

In particular, $G_n = \{g : \deg(g) < n\}.$

The lower asymptotic density $\underline{d}(A)$ is defined by

$$\underline{d}(A) = \liminf_{n \to \infty} \frac{|A_n|}{p^n}.$$

Essential components in $\mathbb{F}_{p}[t]$

Define $G := \mathbb{F}_{p}[t]$. For $A \subset G$, let

$$A_n = \{a : a \in A, \deg(a) < n\}.$$

In particular, $G_n = \{g : \deg(g) < n\}.$

The lower asymptotic density $\underline{d}(A)$ is defined by

$$\underline{d}(A) = \liminf_{n\to\infty} \frac{|A_n|}{p^n}.$$

A set $H \subset G = \mathbb{F}_{p}[t]$ is an essential component if

$$\liminf_{n\to\infty}\frac{|H_n+A_n|}{p^n}>\underline{d}(A),$$

whenever $0 < \underline{d}(A) < 1$.

イロト イポト イラト イラ

 $\underline{d}(A+H) > \underline{d}(A)$, whenever $0 < \underline{d}(A) < 1$.

3

イロト イポト イヨト イヨト

 $\underline{d}(A+H) > \underline{d}(A)$, whenever $0 < \underline{d}(A) < 1$.

• $H \subset G = \mathbb{F}_{p}[t]$ is an essential component if

$$\liminf_{n\to\infty}\frac{|H_n+A_n|}{p^n}>\underline{d}(A),\qquad\text{whenever }0<\underline{d}(A)<1.$$

3

 $\underline{d}(A+H) > \underline{d}(A)$, whenever $0 < \underline{d}(A) < 1$.

• $H \subset G = \mathbb{F}_{\rho}[t]$ is an essential component if

$$\liminf_{n\to\infty}\frac{|H_n+A_n|}{p^n}>\underline{d}(A),\qquad\text{whenever }0<\underline{d}(A)<1.$$

Why not $\underline{d}(A + H) > \underline{d}(A)$?

3

 $\underline{d}(A+H) > \underline{d}(A)$, whenever $0 < \underline{d}(A) < 1$.

• $H \subset G = \mathbb{F}_{\rho}[t]$ is an essential component if

$$\liminf_{n\to\infty}\frac{|H_n+A_n|}{p^n}>\underline{d}(A),\qquad\text{whenever }0<\underline{d}(A)<1.$$

Why not $\underline{d}(A + H) > \underline{d}(A)$?

Note $\mathbb{F}_{\rho}[t]$ is a group, in general we have $H_n + A_n \subsetneq (H + A)_n$.

3

• H is an essential component in \mathbb{N} if

 $\underline{d}(A+H) > \underline{d}(A)$, whenever $0 < \underline{d}(A) < 1$.

• $H \subset G = \mathbb{F}_{p}[t]$ is an essential component if

$$\liminf_{n\to\infty}\frac{|H_n+A_n|}{p^n} > \underline{d}(A), \qquad \text{whenever } 0 < \underline{d}(A) < 1.$$

Why not $\underline{d}(A + H) > \underline{d}(A)$?

Note $\mathbb{F}_{p}[t]$ is a group, in general we have $H_{n} + A_{n} \subsetneq (H + A)_{n}$.

In particular, if *H* is infinite, there exists a set *A* with $\underline{d}(A) = 0$ s.t.

$$A+H=G,$$
 hence $\underline{d}(A+H)=\liminf_{n
ightarrow\infty}rac{|(A+H)_n|}{p^n}=1,$

which is not interesting.

Theorem (Erdős, 1936)

If $kH = \mathbb{N}$ for some positive integer k, then for all n,

$$(A+H)(n) \ge A(n) + \frac{A(n)}{2k} \left(1 - \frac{A(n)}{n}\right)$$

Theorem (Erdős, 1936)

If $kH = \mathbb{N}$ for some positive integer k, then for all n,

$$(A+H)(n) \ge A(n) + \frac{A(n)}{2k} \left(1 - \frac{A(n)}{n}\right)$$

Theorem (Erdős, 1936)

If $kH = \mathbb{N}$ for some positive integer k, then for all n,

$$(A+H)(n) \ge A(n) + \frac{A(n)}{2k} \left(1 - \frac{A(n)}{n}\right)$$

Burke proved the following analog of Erdős' theorem in $\mathbb{F}_{\rho}[t]$.

Theorem (Burke, 1984)

If $H \subset \mathbb{F}_p[t] = G$ and there exists a positive integer k s.t. $kH_n = G_n$ for all $n \in \mathbb{N}$, then

$$|A_n + H_n| \ge |A_n| + \frac{|A_n|}{k} \left(1 - \frac{|A_n|}{p^n}\right)$$

holds for all $n \in \mathbb{N}$.

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

A (10) > A (10) > A (10)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

A (10) > A (10) > A (10)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

We prove the following analog of Ruzsa's theorem.

4 1 1 1 4

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every c > 0, there exists an essential component $H \subset \mathbb{F}_p[t]$ such that $|H_n| = O_p(n^{1+c})$.

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every c > 0, there exists an essential component $H \subset \mathbb{F}_p[t]$ such that $|H_n| = O_p(n^{1+c})$.

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O((\log n)^{1+c})$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every c > 0, there exists an essential component $H \subset \mathbb{F}_p[t]$ such that $|H_n| = O_p(n^{1+c})$.

Our method is also probabilistic. We are not able to give an explicit essential component *H* with counting function $|H_n| = O_p(n^{1+c})$ for small *c*.

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon > 0$, $H(n) \leq (\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

 $0 < \underline{d}(A) = \underline{d}(A + H) < 1.$

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon > 0$, $H(n) \leq (\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

 $0 < \underline{d}(A) = \underline{d}(A + H) < 1.$

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon > 0$, $H(n) \leq (\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$0 < \underline{d}(A) = \underline{d}(A + H) < 1.$$

Theorem 2 (G.-Lê)

Suppose $H \subset \mathbb{F}_p[t]$ such that for any $\varepsilon > 0$, $|H_n| < n^{1+\varepsilon}$ holds infinitely often. Then for any $0 < \delta < 1$, there exists a set $A \subset \mathbb{F}_p[t]$ such that

$$\delta = \underline{d}(A) = \liminf_{n \to \infty} \frac{|A_n + H_n|}{p^n}$$

• Our theorem is more precise than Ruzsa's in ℕ. <u>*d*</u>(*A*) can be any prescribed number.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

4 A N

• Our theorem is more precise than Ruzsa's in ℕ. <u>*d*</u>(*A*) can be any prescribed number.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

4 A N

Our theorem is more precise than Ruzsa's in ℕ. <u>d</u>(A) can be any prescribed number.

• Our proof is not identical to Ruzsa's, since *G* is a group but ℕ is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.

Our theorem is more precise than Ruzsa's in ℕ. <u>d</u>(A) can be any prescribed number.

• Our proof is not identical to Ruzsa's, since *G* is a group but ℕ is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.

Our theorem is more precise than Ruzsa's in ℕ. <u>d</u>(A) can be any prescribed number.

• Our proof is not identical to Ruzsa's, since *G* is a group but ℕ is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.

One difficulty:

For $a, b \in \mathbb{N}$, we always have $a + b \ge \max\{a, b\}$.

However, for $f, g \in \mathbb{F}_{p}[t]$, $\deg(f + g)$ could be any integer $\leq \deg(f)$.

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O(\exp(c\sqrt{\log n}\log\log n)).$

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O(\exp(c\sqrt{\log n}\log\log n)).$

Theorem (Wirsing, 1976)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O(\exp(c\sqrt{\log n} \log \log n)).$

For $f = \sum_{j=0}^{n-1} a_j t^j$, we define supp $(f) = \{j : a_j \neq 0\}$.

Theorem (Wirsing, 1976)

For every c > 0 there exists an essential component $H \subset \mathbb{N}$ with $H(n) = O(\exp(c\sqrt{\log n} \log \log n)).$

For
$$f=\sum_{j=0}^{n-1}a_jt^j$$
, we define $ext{supp}(f)=\{j:a_j
eq 0\}.$

Theorem 3 (G.-Lê)

Let $\mathbf{1}_n = \mathbf{1} + t + \cdots t^{n-1}$ and $\mathbf{0} < c < 1$ be a real number. Then

$$H = \bigcup_{n=1}^{\infty} \{f + \mathbf{1}_n : |\operatorname{supp}(f)| \le c\sqrt{n}\}$$

is an essential component of $\mathbb{F}_p[t]$ and $|H_n| = \exp\left(O_p(c\sqrt{n}\log n)\right)$.

Now we prove that for a large fixed *n*, there exists an essential component *K* in *G_n* such that $|K| \le 25n \log p$ and for any $A \subset G_n$,

$$|\mathcal{K}+\mathcal{A}| \geq |\mathcal{A}| + \frac{5}{9}|\mathcal{A}| \left(1 - \frac{|\mathcal{A}|}{p^n}\right).$$

- N

A .

A Fourier Analysis Tool:

Let $e_p(x) = e^{2\pi i x/p}$. Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

(4) (5) (4) (5)

A .

A Fourier Analysis Tool:

Let $e_p(x) = e^{2\pi i x/p}$. Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

If there exists $\eta \ge 0$ s.t. $|\xi(x)| \le \eta$ for all $x \in G_n \setminus \{0\}$, then for any $A \subset G_n$, we have

$$|\boldsymbol{A}+\boldsymbol{K}|\geq |\boldsymbol{A}|+(1-\eta^2)|\boldsymbol{A}|\left(1-rac{|\boldsymbol{A}|}{\boldsymbol{p}^n}
ight)$$

Zhenchao Ge & Thái Hoàng Lê

A Fourier Analysis Tool:

Let $e_p(x) = e^{2\pi i x/p}$. Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

If there exists $\eta \ge 0$ s.t. $|\xi(x)| \le \eta$ for all $x \in G_n \setminus \{0\}$, then for any $A \subset G_n$, we have

$$|\boldsymbol{A} + \boldsymbol{K}| \ge |\boldsymbol{A}| + (1 - \eta^2)|\boldsymbol{A}| \left(1 - \frac{|\boldsymbol{A}|}{\boldsymbol{p}^n}\right)$$

Proof. Cauchy-Schwarz's inequality and Plancherel's identity.

Zhenchao Ge & Thái Hoàng Lê

イロト イポト イラト イラト

Recall that $G = \mathbb{F}_{p}[t]$. Let $e_{p}(x) = e^{2\pi i x/p}$.

э

Recall that
$$G = \mathbb{F}_{\rho}[t]$$
. Let $e_{\rho}(x) = e^{2\pi i x/\rho}$.

Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

Recall that
$$G = \mathbb{F}_{\rho}[t]$$
. Let $e_{\rho}(x) = e^{2\pi i x/\rho}$.

Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

If there exists $\eta \ge 0$ s.t. $|\xi(x)| \le \eta$ for all $x \in G_n \setminus \{0\}$, then for any $A \subset G_n$, we have

$$|\boldsymbol{A}+\boldsymbol{K}| \geq |\boldsymbol{A}| + (1-\eta^2)|\boldsymbol{A}| \left(1-\frac{|\boldsymbol{A}|}{\boldsymbol{p}^n}\right)$$

Recall that
$$G = \mathbb{F}_{\rho}[t]$$
. Let $e_{\rho}(x) = e^{2\pi i x/\rho}$.

Let $K \subset G_n$ and $(c_k)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_k = 1$. Define

$$\xi(x) = \sum_{k \in K} c_k e_p(k \cdot x)$$

for $x \in G_n$.

If there exists $\eta \ge 0$ s.t. $|\xi(x)| \le \eta$ for all $x \in G_n \setminus \{0\}$, then for any $A \subset G_n$, we have

$$|\boldsymbol{A} + \boldsymbol{K}| \ge |\boldsymbol{A}| + (1 - \eta^2)|\boldsymbol{A}| \left(1 - \frac{|\boldsymbol{A}|}{\boldsymbol{p}^n}\right)$$

Proof. Cauchy-Schwarz's inequality and Plancherel's identity.

Let $\{X_k\}_{k \in G_n}$ be a set of *independent* Bernoulli random variables s.t.

$$\mathbf{P}(X_k=1)=rac{lpha n}{|G_n|}, ext{ and } \mathbf{P}(X_k=0)=1-rac{lpha n}{|G_n|},$$

where α is a bounded number that will be determined later.

A .

Let $\{X_k\}_{k \in G_n}$ be a set of *independent* Bernoulli random variables s.t.

$$\mathbf{P}(X_k=1)=rac{lpha n}{|G_n|}, ext{ and } \mathbf{P}(X_k=0)=1-rac{lpha n}{|G_n|},$$

where α is a bounded number that will be determined later.

Define

$$K:=\{k\in G_n: X_k=1\}.$$

Zhenchao Ge & Thái Hoàng Lê

A .

Let $\{X_k\}_{k \in G_n}$ be a set of *independent* Bernoulli random variables s.t.

$$\mathbf{P}(X_k=1)=rac{lpha n}{|G_n|}, ext{ and } \mathbf{P}(X_k=0)=1-rac{lpha n}{|G_n|},$$

where α is a bounded number that will be determined later.

Define

$$K:=\{k\in G_n: X_k=1\}.$$

In a high probability, *K* is the set we need.

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon > 0$

$$\mathbf{P}(||\mathcal{K}| - \alpha \mathbf{n}| \ge \varepsilon \mathbf{n}) < \frac{\alpha}{\varepsilon^2 \mathbf{n}} \to 0 \quad \text{as } \mathbf{n} \to \infty. \tag{1}$$

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon > 0$

$$\mathbf{P}(||\mathcal{K}| - \alpha \mathbf{n}| \ge \varepsilon \mathbf{n}) < \frac{\alpha}{\varepsilon^2 \mathbf{n}} \to \mathbf{0} \quad \text{as } \mathbf{n} \to \infty.$$
 (1)

For $x \in G_n \setminus \{0\}$, let

$$r(x) := \sum_{k \in G_n} X_k e_p(k \cdot x) = \sum_{k \in K} e_p(k \cdot x).$$

Zhenchao Ge & Thái Hoàng Lê

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon > 0$

$$\mathbf{P}(||\mathcal{K}| - \alpha \mathbf{n}| \ge \varepsilon \mathbf{n}) < \frac{\alpha}{\varepsilon^2 \mathbf{n}} \to \mathbf{0} \quad \text{as } \mathbf{n} \to \infty.$$
 (1)

For $x \in G_n \setminus \{0\}$, let

$$r(x) := \sum_{k \in G_n} X_k e_p(k \cdot x) = \sum_{k \in K} e_p(k \cdot x).$$

One can calculate that

$$\mathbf{P}(\max_{x\neq 0}|r(x)|\geq \alpha n/2)\leq p^{-n/9}\to 0\qquad \text{as }n\to\infty. \tag{2}$$

Zhenchao Ge & Thái Hoàng Lê

4 1 1 1 4

Goal: Find a sequence of complex number $(c_k)_{k \in K}$ with $\sum_{k \in K} c_k = 1$ such that

$$\max_{x\neq 0} |\xi(x)| = \left| \sum_{k\in \mathcal{K}} c_k e_p(k\cdot t) \right| \le \eta < 1.$$
(3)

Goal: Find a sequence of complex number $(c_k)_{k \in K}$ with $\sum_{k \in K} c_k = 1$ such that

$$\max_{x\neq 0} |\xi(x)| = \left| \sum_{k\in K} c_k e_p(k \cdot t) \right| \le \eta < 1.$$
(3)

Let

$$c_k = \frac{X_k}{\sum_{k \in G_n} X_k} = \frac{X_k}{|K|}.$$

By (1) and (2), we can see that

$$\mathbf{P}\left(\max_{x\neq 0}|\xi(x)|\geq \frac{\alpha}{2(\alpha-\varepsilon)}\right)<\frac{\alpha}{\varepsilon^2n}+\frac{1}{p^{n/9}}\to 0\qquad \text{as }n\to\infty.$$

Zhenchao Ge & Thái Hoàng Lê

$$\mathbf{P}\left(\max_{x\neq 0} |\xi(x)| < \frac{2}{3}\right) > 1 - \frac{1}{p^{n/9}} - \frac{4}{5n\log p} \to 1, \qquad \text{as } n \to \infty.$$

æ

$$\mathbf{P}\left(\max_{x\neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n/9}}-\frac{4}{5n\log p}\to 1,\qquad \text{as }n\to\infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

$$\mathbf{P}\left(\max_{x\neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n/9}}-\frac{4}{5n\log p}\to 1,\qquad \text{as }n\to\infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

Summary:

The key of the proof is to find c_k s.t. | ∑_{k∈K} c_ke_p(x ⋅ k)| is uniformly small for all non-zero x.

$$\mathbf{P}\left(\max_{x\neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n/9}}-\frac{4}{5n\log p}\to 1,\qquad \text{as }n\to\infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

Summary:

The key of the proof is to find c_k s.t. | ∑_{k∈K} c_ke_p(x ⋅ k)| is uniformly small for all non-zero x.

$$\mathbf{P}\left(\max_{x\neq 0} |\xi(x)| < \frac{2}{3}\right) > 1 - \frac{1}{p^{n/9}} - \frac{4}{5n\log p} \to 1, \qquad \text{as } n \to \infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

Summary:

- The key of the proof is to find c_k s.t. | ∑_{k∈K} c_ke_p(x ⋅ k)| is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in *G*, but using more complicated weight functions *c_k*.

$$\mathbf{P}\left(\max_{x\neq 0} |\xi(x)| < \frac{2}{3}\right) > 1 - \frac{1}{p^{n/9}} - \frac{4}{5n\log p} \to 1, \qquad \text{as } n \to \infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

Summary:

- The key of the proof is to find c_k s.t. | ∑_{k∈K} c_ke_p(x ⋅ k)| is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in *G*, but using more complicated weight functions *c_k*.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\mathbf{P}\left(\max_{x\neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n/9}}-\frac{4}{5n\log p}\to 1,\qquad \text{as }n\to\infty.$$

Therefore, in a high probably, $K = \{k : X_k = 1\}$ is an essential component in G_n with $|K| \le 25n \log p$.

Summary:

- The key of the proof is to find c_k s.t. | ∑_{k∈K} c_ke_p(x ⋅ k)| is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in G, but using more complicated weight functions ck.
- Note that for a fixed large *n*, there exists an essential component *H_n* ⊂ *G_n* s.t. |*H_n*| = *O_p*(*n*). However, in *G*, there is no essential component *H* ⊂ *G* s.t. |*H_n*| = *O_p*(*n*^{1+o(1)}).

Thank You!

æ

<ロ> (日) (日) (日) (日) (日)