Essential Components in $\mathbb{F}_{p}[t]$

Zhenchao Ge \& Thái Hoàng Lê

University of Mississippi

Oct. 26-27, 2019
7th annual Mississippi Discrete Math Workshop

For two sets A, B in an abelian group G, we denote

$$
A \pm B=\{a \pm b: a \in A, b \in B\}
$$

and denote the k-fold sumset by

$$
k A=A+\cdots+A \quad(k \text { times }) .
$$

For two sets A, B in an abelian group G, we denote

$$
A \pm B=\{a \pm b: a \in A, b \in B\}
$$

and denote the k-fold sumset by

$$
k A=A+\cdots+A \quad(k \text { times }) .
$$

If $A \subset G$, we denote $\#\{a: a \in A\}$ by $|A|$.

For two sets A, B in an abelian group G, we denote

$$
A \pm B=\{a \pm b: a \in A, b \in B\} .
$$

and denote the k-fold sumset by

$$
k A=A+\cdots+A \quad(k \text { times }) .
$$

If $A \subset G$, we denote $\#\{a: a \in A\}$ by $|A|$.

By the density of A in G, we mean $\frac{|A|}{|G|}$.

Essential Components in \mathbb{N}

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$
A(n)=\#\{a: a \in A, 1 \leq a \leq n\}
$$

be the counting function of A.

Essential Components in \mathbb{N}

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$
A(n)=\#\{a: a \in A, 1 \leq a \leq n\}
$$

be the counting function of A.
The Schnirelmann density $\sigma(A)$ is defined by

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

Essential Components in \mathbb{N}

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$
A(n)=\#\{a: a \in A, 1 \leq a \leq n\}
$$

be the counting function of A.
The Schnirelmann density $\sigma(A)$ is defined by

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

Theorem (Schnirelmann's inequality, 1930)

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)-\sigma(A) \sigma(B), \quad \text { if } 0 \in A \cup B
$$

Essential Components in \mathbb{N}

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$
A(n)=\#\{a: a \in A, 1 \leq a \leq n\}
$$

be the counting function of A.
The Schnirelmann density $\sigma(A)$ is defined by

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

Theorem (Schnirelmann's inequality, 1930)

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)-\sigma(A) \sigma(B), \quad \text { if } 0 \in A \cup B
$$

Essential Components in \mathbb{N}

Let \mathbb{N} be the set of non-negative integers. For $A \subset \mathbb{N}$, we let

$$
A(n)=\#\{a: a \in A, 1 \leq a \leq n\}
$$

be the counting function of A.
The Schnirelmann density $\sigma(A)$ is defined by

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

Theorem (Schnirelmann's inequality, 1930)

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)-\sigma(A) \sigma(B), \quad \text { if } 0 \in A \cup B
$$

Schnirelmann proved that $c P=\mathbb{N}$, where $P=\{$ primes $\} \cup\{0,1\}$ and $c>0$ is some constant, which was the first unconditional result on the Goldbach conjecture.

Essential Components in \mathbb{N}

Schnirelmann Density:

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

Essential Components in \mathbb{N}

Schnirelmann Density:

$$
\sigma(A)=\inf _{n \geq 1} \frac{A(n)}{n}
$$

A set $H \subset \mathbb{N}$ is called a Schnirelmann essential component if

$$
\sigma(A+H)>\sigma(A)
$$

whenever $0<\sigma(A)<1$.

If $A \subset \mathbb{N}$, the lower asymptotic density $\underline{d}(A)$ is defined by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{A(n)}{n} .
$$

A set $H \subset \mathbb{N}$ is called an asymptotic essential component if

$$
\underline{d}(A+H)>\underline{d}(A)
$$

whenever $0<\underline{d}(A)<1$.

If $A \subset \mathbb{N}$, the lower asymptotic density $\underline{d}(A)$ is defined by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{A(n)}{n} .
$$

A set $H \subset \mathbb{N}$ is called an asymptotic essential component if

$$
\underline{d}(A+H)>\underline{d}(A)
$$

whenever $0<\underline{d}(A)<1$.

Theorem (Plünnecke, 1969)

A set of integers is a Schnirelmann essential component if and only if it is an asymptotic essential component and it contains $\{0,1\}$.

- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0 , which is the set of squares.
- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0 , which is the set of squares.
- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0 , which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set H is an additive basis of order k if $k H=\mathbb{N}$ for some $k \in \mathbb{Z}^{+}$.

- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0 , which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set H is an additive basis of order k if $k H=\mathbb{N}$ for some $k \in \mathbb{Z}^{+}$.

- Schnirelmann's inequality

$$
\sigma(A+B) \geq \sigma(A)+\sigma(B)(1-\sigma(A))
$$

implies that any set with a positive Schnirelmann density is an essential component.

- Khinchin (1933) gave the first example of an essential component with density 0 , which is the set of squares.
- Erdős (1936) proved that every basis is an essential component.

A set H is an additive basis of order k if $k H=\mathbb{N}$ for some $k \in \mathbb{Z}^{+}$.
If H is an additive basis of order k, then $H(n) \gg n^{1 / k}$.

Q: If H is an essential component, then how small can $H(n)$ be?

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n)=O\left(\exp \left(\log ^{\frac{9}{10}} n\right)\right)$, which hence is not a basis.

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n)=O\left(\exp \left(\log ^{\frac{9}{10}} n\right)\right)$, which hence is not a basis.

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Linnik, 1942)

There is an essential component satisfying $H(n)=O\left(\exp \left(\log ^{\frac{9}{10}} n\right)\right)$, which hence is not a basis.

Theorem (Wirsing, 1976)

For every $\varepsilon>0$ there exists an essential component H with $H(n)=O(\exp (\varepsilon \sqrt{\log n} \log \log n))$.

Q: If H is an essential component, then how small can $H(n)$ be?

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n)=O\left((\log n)^{1+C}\right)$.

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n)=O\left((\log n)^{1+C}\right)$.

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n)=O\left((\log n)^{1+C}\right)$.

Ruzsa's construction is probabilistic.

Q: If H is an essential component, then how small can $H(n)$ be?

Theorem (Ruzsa, 1984)

For every c > 0 there exists an essential component H with $H(n)=O\left((\log n)^{1+c}\right)$.

Ruzsa's construction is probabilistic.

Theorem (Ruzsa, 1984)

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon>0, H(n) \leq(\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$
0<\underline{d}(A)=\underline{d}(A+H)<1 .
$$

Consequently, there does not exists an essential component H with $H(n) \ll(\log n)^{1+o(1)}$.

Essential components in $\mathbb{F}_{p}[t]$

Define $G:=\mathbb{F}_{p}[t]$. For $A \subset G$, let

$$
A_{n}=\{a: a \in A, \operatorname{deg}(a)<n\} .
$$

In particular, $G_{n}=\{g: \operatorname{deg}(g)<n\}$.

Essential components in $\mathbb{F}_{p}[t]$

Define $G:=\mathbb{F}_{p}[t]$. For $A \subset G$, let

$$
A_{n}=\{a: a \in A, \operatorname{deg}(a)<n\} .
$$

In particular, $G_{n}=\{g: \operatorname{deg}(g)<n\}$.
The lower asymptotic density $\underline{d}(A)$ is defined by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{\left|A_{n}\right|}{p^{n}} .
$$

Essential components in $\mathbb{F}_{p}[t]$

Define $G:=\mathbb{F}_{p}[t]$. For $A \subset G$, let

$$
A_{n}=\{a: a \in A, \operatorname{deg}(a)<n\} .
$$

In particular, $G_{n}=\{g: \operatorname{deg}(g)<n\}$.
The lower asymptotic density $\underline{d}(A)$ is defined by

$$
\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{\left|A_{n}\right|}{p^{n}} .
$$

A set $H \subset G=\mathbb{F}_{\rho}[t]$ is an essential component if

$$
\liminf _{n \rightarrow \infty} \frac{\left|H_{n}+A_{n}\right|}{p^{n}}>\underline{d}(A),
$$

whenever $0<\underline{d}(A)<1$.

- H is an essential component in \mathbb{N} if

$$
\underline{d}(A+H)>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- H is an essential component in \mathbb{N} if

$$
\underline{d}(A+H)>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- $H \subset G=\mathbb{F}_{p}[t]$ is an essential component if

$$
\liminf _{n \rightarrow \infty} \frac{\left|H_{n}+A_{n}\right|}{p^{n}}>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- H is an essential component in \mathbb{N} if

$$
\underline{d}(A+H)>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- $H \subset G=\mathbb{F}_{p}[t]$ is an essential component if

$$
\liminf _{n \rightarrow \infty} \frac{\left|H_{n}+A_{n}\right|}{p^{n}}>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1
$$

Why not $\underline{d}(A+H)>\underline{d}(A)$?

- H is an essential component in \mathbb{N} if

$$
\underline{d}(A+H)>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- $H \subset G=\mathbb{F}_{p}[t]$ is an essential component if

$$
\liminf _{n \rightarrow \infty} \frac{\left|H_{n}+A_{n}\right|}{p^{n}}>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1
$$

Why not $\underline{d}(A+H)>\underline{d}(A)$?
Note $\mathbb{F}_{p}[t]$ is a group, in general we have $H_{n}+A_{n} \subsetneq(H+A)_{n}$.

- H is an essential component in \mathbb{N} if

$$
\underline{d}(A+H)>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1 .
$$

- $H \subset G=\mathbb{F}_{p}[t]$ is an essential component if

$$
\liminf _{n \rightarrow \infty} \frac{\left|H_{n}+A_{n}\right|}{p^{n}}>\underline{d}(A), \quad \text { whenever } 0<\underline{d}(A)<1
$$

Why not $\underline{d}(A+H)>\underline{d}(A)$?
Note $\mathbb{F}_{p}[t]$ is a group, in general we have $H_{n}+A_{n} \subsetneq(H+A)_{n}$. In particular, if H is infinite, there exists a set A with $\underline{d}(A)=0$ s.t.

$$
A+H=G, \quad \text { hence } \quad \underline{d}(A+H)=\liminf _{n \rightarrow \infty} \frac{\left|(A+H)_{n}\right|}{p^{n}}=1,
$$

which is not interesting.

Essential components in $\mathbb{F}_{p}[t]$

Theorem (Erdős, 1936)

If $k H=\mathbb{N}$ for some positive integer k, then for all n,

$$
(A+H)(n) \geq A(n)+\frac{A(n)}{2 k}\left(1-\frac{A(n)}{n}\right) .
$$

Essential components in $\mathbb{F}_{p}[t]$

Theorem (Erdős, 1936)

If $k H=\mathbb{N}$ for some positive integer k, then for all n,

$$
(A+H)(n) \geq A(n)+\frac{A(n)}{2 k}\left(1-\frac{A(n)}{n}\right) .
$$

Essential components in $\mathbb{F}_{p}[t]$

Theorem (Erdős, 1936)

If $k H=\mathbb{N}$ for some positive integer k, then for all n,

$$
(A+H)(n) \geq A(n)+\frac{A(n)}{2 k}\left(1-\frac{A(n)}{n}\right) .
$$

Burke proved the following analog of Erdős' theorem in $\mathbb{F}_{p}[t]$.

Theorem (Burke, 1984)

If $H \subset \mathbb{F}_{p}[t]=G$ and there exists a positive integer k s.t. $k H_{n}=G_{n}$ for all $n \in \mathbb{N}$, then

$$
\left|A_{n}+H_{n}\right| \geq\left|A_{n}\right|+\frac{\left|A_{n}\right|}{k}\left(1-\frac{\left|A_{n}\right|}{p^{n}}\right)
$$

holds for all $n \in \mathbb{N}$.

Theorem (Ruzsa, 1984)

For every c >0 there exists an essential component $\mathrm{H} \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+c}\right)$.

Theorem (Ruzsa, 1984)

For every c >0 there exists an essential component $\mathrm{H} \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+c}\right)$.

Theorem (Ruzsa, 1984)

For every c >0 there exists an essential component $\mathrm{H} \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+C}\right)$.

We prove the following analog of Ruzsa's theorem.

Theorem (Ruzsa, 1984)

For every c>0 there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+c}\right)$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every $c>0$, there exists an essential component $H \subset \mathbb{F}_{p}[t]$ such that $\left|H_{n}\right|=O_{p}\left(n^{1+c}\right)$.

Theorem (Ruzsa, 1984)

For every c>0 there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+c}\right)$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every $c>0$, there exists an essential component $H \subset \mathbb{F}_{p}[t]$ such that $\left|H_{n}\right|=O_{p}\left(n^{1+c}\right)$.

Theorem (Ruzsa, 1984)

For every $c>0$ there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O\left((\log n)^{1+c}\right)$.

We prove the following analog of Ruzsa's theorem.

Theorem 1 (G.-Lê)

For every $c>0$, there exists an essential component $H \subset \mathbb{F}_{p}[t]$ such that $\left|H_{n}\right|=O_{p}\left(n^{1+c}\right)$.

Our method is also probabilistic. We are not able to give an explicit essential component H with counting function $\left|H_{n}\right|=O_{p}\left(n^{1+c}\right)$ for small c.

Theorem (Ruzsa, 1984)

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon>0, H(n) \leq(\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$
0<\underline{d}(A)=\underline{d}(A+H)<1 .
$$

Theorem (Ruzsa, 1984)

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon>0, H(n) \leq(\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$
0<\underline{d}(A)=\underline{d}(A+H)<1 .
$$

Theorem (Ruzsa, 1984)

Suppose $H \subset \mathbb{N}$ such that for any $\varepsilon>0, H(n) \leq(\log n)^{1+\varepsilon}$ holds infinitely often. Then there exists a set $A \subset \mathbb{N}$ such that

$$
0<\underline{d}(A)=\underline{d}(A+H)<1 .
$$

Theorem 2 (G.-Lê)

Suppose $H \subset \mathbb{F}_{p}[t]$ such that for any $\varepsilon>0,\left|H_{n}\right|<n^{1+\varepsilon}$ holds infinitely often. Then for any $0<\delta<1$, there exists a set $A \subset \mathbb{F}_{p}[t]$ such that

$$
\delta=\underline{d}(A)=\liminf _{n \rightarrow \infty} \frac{\left|A_{n}+H_{n}\right|}{p^{n}} .
$$

- Our theorem is more precise than Ruzsa's in \mathbb{N}. $\underline{d}(A)$ can be any prescribed number.
- Our theorem is more precise than Ruzsa's in \mathbb{N}. $\underline{d}(A)$ can be any prescribed number.
- Our theorem is more precise than Ruzsa's in \mathbb{N}. $\underline{d}(A)$ can be any prescribed number.
- Our proof is not identical to Ruzsa's, since G is a group but \mathbb{N} is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.
- Our theorem is more precise than Ruzsa's in \mathbb{N}. $\underline{d}(A)$ can be any prescribed number.
- Our proof is not identical to Ruzsa's, since G is a group but \mathbb{N} is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.
- Our theorem is more precise than Ruzsa's in \mathbb{N}. $\underline{d}(A)$ can be any prescribed number.
- Our proof is not identical to Ruzsa's, since G is a group but \mathbb{N} is a semi-group. The group structure simplifies some calculation, but it causes extra difficulties.

One difficulty:

For $a, b \in \mathbb{N}$, we always have $a+b \geq \max \{a, b\}$.
However, for $f, g \in \mathbb{F}_{p}[t], \operatorname{deg}(f+g)$ could be any integer $\leq \operatorname{deg}(f)$.

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every $c>0$ there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O(\exp (c \sqrt{\log n} \log \log n))$.

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every $c>0$ there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O(\exp (c \sqrt{\log n} \log \log n))$.

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every c > 0 there exists an essential component $\mathrm{H} \subset \mathbb{N}$ with $H(n)=O(\exp (c \sqrt{\log n} \log \log n))$.

For $f=\sum_{j=0}^{n-1} a_{j} t^{j}$, we define $\operatorname{supp}(f)=\left\{j: a_{j} \neq 0\right\}$.

Explicit examples of essential components

Theorem (Wirsing, 1976)

For every $c>0$ there exists an essential component $H \subset \mathbb{N}$ with $H(n)=O(\exp (c \sqrt{\log n} \log \log n))$.

For $f=\sum_{j=0}^{n-1} a_{j} t^{j}$, we define $\operatorname{supp}(f)=\left\{j: a_{j} \neq 0\right\}$.

Theorem 3 (G.-Lê)

Let $\mathbf{1}_{n}=1+t+\cdots t^{n-1}$ and $0<c<1$ be a real number. Then

$$
H=\cup_{n=1}^{\infty}\left\{f+\mathbf{1}_{n}:|\operatorname{supp}(f)| \leq c \sqrt{n}\right\}
$$

is an essential component of $\mathbb{F}_{p}[t]$ and $\left|H_{n}\right|=\exp \left(O_{p}(c \sqrt{n} \log n)\right)$.

Essential components in G_{n}

Now we prove that for a large fixed n, there exists an essential component K in G_{n} such that $|K| \leq 25 n \log p$ and for any $A \subset G_{n}$,

$$
|K+A| \geq|A|+\frac{5}{9}|A|\left(1-\frac{|A|}{p^{n}}\right)
$$

A Fourier Analysis Tool:

Let $e_{p}(x)=e^{2 \pi i x / p}$. Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.

A Fourier Analysis Tool:

Let $e_{p}(x)=e^{2 \pi i x / p}$. Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.
If there exists $\eta \geq 0$ s.t. $|\xi(x)| \leq \eta$ for all $x \in G_{n} \backslash\{0\}$, then for any $A \subset G_{n}$, we have

$$
|A+K| \geq|A|+\left(1-\eta^{2}\right)|A|\left(1-\frac{|A|}{p^{n}}\right)
$$

A Fourier Analysis Tool:

Let $e_{p}(x)=e^{2 \pi i x / p}$. Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.
If there exists $\eta \geq 0$ s.t. $|\xi(x)| \leq \eta$ for all $x \in G_{n} \backslash\{0\}$, then for any $A \subset G_{n}$, we have

$$
|A+K| \geq|A|+\left(1-\eta^{2}\right)|A|\left(1-\frac{|A|}{p^{n}}\right)
$$

Proof. Cauchy-Schwarz's inequality and Plancherel's identity.

The Idea of the Proof in G_{n}

Recall that $G=\mathbb{F}_{p}[t]$. Let $e_{p}(x)=e^{2 \pi i x / p}$.

The Idea of the Proof in G_{n}

Recall that $G=\mathbb{F}_{p}[t]$. Let $e_{p}(x)=e^{2 \pi i x / p}$.
Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s. t. $\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.

The Idea of the Proof in G_{n}

Recall that $G=\mathbb{F}_{p}[t]$. Let $e_{p}(x)=e^{2 \pi i x / p}$.
Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s.t.
$\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.
If there exists $\eta \geq 0$ s.t. $|\xi(x)| \leq \eta$ for all $x \in G_{n} \backslash\{0\}$, then for any $A \subset G_{n}$, we have

$$
|A+K| \geq|A|+\left(1-\eta^{2}\right)|A|\left(1-\frac{|A|}{p^{n}}\right) .
$$

The Idea of the Proof in G_{n}

Recall that $G=\mathbb{F}_{p}[t]$. Let $e_{p}(x)=e^{2 \pi i x / p}$.
Let $K \subset G_{n}$ and $\left(c_{k}\right)_{k \in K}$ be arbitrary complex numbers s. t.
$\sum_{k \in K} c_{k}=1$. Define

$$
\xi(x)=\sum_{k \in K} c_{k} e_{p}(k \cdot x)
$$

for $x \in G_{n}$.
If there exists $\eta \geq 0$ s.t. $|\xi(x)| \leq \eta$ for all $x \in G_{n} \backslash\{0\}$, then for any $A \subset G_{n}$, we have

$$
|A+K| \geq|A|+\left(1-\eta^{2}\right)|A|\left(1-\frac{|A|}{p^{n}}\right) .
$$

Proof. Cauchy-Schwarz's inequality and Plancherel's identity.

Construction of the set K

Let $\left\{X_{k}\right\}_{k \in G_{n}}$ be a set of independent Bernoulli random variables s.t.

$$
\mathbf{P}\left(X_{k}=1\right)=\frac{\alpha n}{\left|G_{n}\right|}, \quad \text { and } \quad \mathbf{P}\left(X_{k}=0\right)=1-\frac{\alpha n}{\left|G_{n}\right|}
$$

where α is a bounded number that will be determined later.

Construction of the set K

Let $\left\{X_{k}\right\}_{k \in G_{n}}$ be a set of independent Bernoulli random variables s.t.

$$
\mathbf{P}\left(X_{k}=1\right)=\frac{\alpha n}{\left|G_{n}\right|}, \quad \text { and } \quad \mathbf{P}\left(X_{k}=0\right)=1-\frac{\alpha n}{\left|G_{n}\right|}
$$

where α is a bounded number that will be determined later.

Define

$$
K:=\left\{k \in G_{n}: X_{k}=1\right\}
$$

Construction of the set K

Let $\left\{X_{k}\right\}_{k \in G_{n}}$ be a set of independent Bernoulli random variables s.t.

$$
\mathbf{P}\left(X_{k}=1\right)=\frac{\alpha n}{\left|G_{n}\right|}, \quad \text { and } \quad \mathbf{P}\left(X_{k}=0\right)=1-\frac{\alpha n}{\left|G_{n}\right|}
$$

where α is a bounded number that will be determined later.

Define

$$
K:=\left\{k \in G_{n}: X_{k}=1\right\} .
$$

In a high probability, K is the set we need.

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon>0$

$$
\begin{equation*}
\mathbf{P}(||K|-\alpha n| \geq \varepsilon n)<\frac{\alpha}{\varepsilon^{2} n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon>0$

$$
\begin{equation*}
\mathbf{P}(||K|-\alpha n| \geq \varepsilon n)<\frac{\alpha}{\varepsilon^{2} n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

For $x \in G_{n} \backslash\{0\}$, let

$$
r(x):=\sum_{k \in G_{n}} X_{k} e_{p}(k \cdot x)=\sum_{k \in K} e_{p}(k \cdot x)
$$

After some standard calculation and using Chebyshev's inequality, we obtain that for any $\varepsilon>0$

$$
\begin{equation*}
\mathbf{P}(||K|-\alpha n| \geq \varepsilon n)<\frac{\alpha}{\varepsilon^{2} n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

For $x \in G_{n} \backslash\{0\}$, let

$$
r(x):=\sum_{k \in G_{n}} X_{k} e_{p}(k \cdot x)=\sum_{k \in K} e_{p}(k \cdot x) .
$$

One can calculate that

$$
\begin{equation*}
\mathbf{P}\left(\max _{x \neq 0}|r(x)| \geq \alpha n / 2\right) \leq p^{-n / 9} \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2}
\end{equation*}
$$

Goal: Find a sequence of complex number $\left(c_{k}\right)_{k \in K}$ with $\sum_{k \in K} c_{k}=1$

 such that$$
\begin{equation*}
\max _{x \neq 0}|\xi(x)|=\left|\sum_{k \in K} c_{k} e_{p}(k \cdot t)\right| \leq \eta<1 \tag{3}
\end{equation*}
$$

Goal: Find a sequence of complex number $\left(c_{k}\right)_{k \in K}$ with $\sum_{k \in K} c_{k}=1$ such that

$$
\begin{equation*}
\max _{x \neq 0}|\xi(x)|=\left|\sum_{k \in K} c_{k} e_{p}(k \cdot t)\right| \leq \eta<1 . \tag{3}
\end{equation*}
$$

Let

$$
c_{k}=\frac{X_{k}}{\sum_{k \in G_{n}} X_{k}}=\frac{X_{k}}{|K|} .
$$

By (1) and (2), we can see that

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)| \geq \frac{\alpha}{2(\alpha-\varepsilon)}\right)<\frac{\alpha}{\varepsilon^{2} n}+\frac{1}{p^{n / 9}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty .
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

Summary:

- The key of the proof is to find c_{k} s.t. $\left|\sum_{k \in K} c_{k} e_{p}(x \cdot k)\right|$ is uniformly small for all non-zero x.

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

Summary:

- The key of the proof is to find c_{k} s.t. $\left|\sum_{k \in K} c_{k} e_{p}(x \cdot k)\right|$ is uniformly small for all non-zero x.

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty .
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

Summary:

- The key of the proof is to find c_{k} s.t. $\left|\sum_{k \in K} c_{k} e_{p}(x \cdot k)\right|$ is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in G, but using more complicated weight functions c_{k}.

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty .
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

Summary:

- The key of the proof is to find c_{k} s.t. $\left|\sum_{k \in K} c_{k} e_{p}(x \cdot k)\right|$ is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in G, but using more complicated weight functions c_{k}.

In particular, if take $\alpha=20 \log p$ and let $\varepsilon=5 \log p$, then

$$
\mathbf{P}\left(\max _{x \neq 0}|\xi(x)|<\frac{2}{3}\right)>1-\frac{1}{p^{n / 9}}-\frac{4}{5 n \log p} \rightarrow 1, \quad \text { as } n \rightarrow \infty .
$$

Therefore, in a high probably, $K=\left\{k: X_{k}=1\right\}$ is an essential component in G_{n} with $|K| \leq 25 n \log p$.

Summary:

- The key of the proof is to find c_{k} s.t. $\left|\sum_{k \in K} c_{k} e_{p}(x \cdot k)\right|$ is uniformly small for all non-zero x.
- Following this idea, we can prove the existence of an essential component in G, but using more complicated weight functions c_{k}.
- Note that for a fixed large n, there exists an essential component $H_{n} \subset G_{n}$ s.t. $\left|H_{n}\right|=O_{p}(n)$. However, in G, there is no essential component $H \subset G$ s.t. $\left|H_{n}\right|=O_{p}\left(n^{1+o(1)}\right)$.

Thank You!

