Toughness in pseudo-random graphs

Xiaofeng Gu (University of West Georgia)

7th annual Mississippi Discrete Math Workshop

October 27, 2019

(日) (日) (日) (日) (日) (日) (日)

Background

• Random graph *G*(*n*, *p*) model: a graph with *n* vertices is constructed by adding each edge randomly and independently with probability *p*.

Background

- Random graph G(n, p) model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with *n* vertices of edge density *p* is a graph that behaves like a truly random graph *G*(*n*, *p*).

Background

- Random graph G(n, p) model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with *n* vertices of edge density *p* is a graph that behaves like a truly random graph *G*(*n*, *p*).
- It was Thomason who first introduced the quantitative definition of pseudo-random graphs, by defining the term of jumbled graphs.

Background

- Random graph G(n, p) model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with *n* vertices of edge density *p* is a graph that behaves like a truly random graph *G*(*n*, *p*).
- It was Thomason who first introduced the quantitative definition of pseudo-random graphs, by defining the term of jumbled graphs.
- A graph G is (p, α)-jumbled (where 0

$$\left| e(U) - p\binom{|U|}{2} \right| \le \alpha |U|,$$

where p is the density and α controls the deviation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで

Matrix and Eigenvalue

• Let *G* be a simple graph with vertices v_1, v_2, \dots, v_n . The adjacency matrix of *G*, denoted by $A(G) = (a_{ij})$, is an $n \times n$ matrix such that $a_{ij} = 1$ if there is an edge between v_i and v_j , and $a_{ij} = 0$ otherwise.

Matrix and Eigenvalue

- Let *G* be a simple graph with vertices v_1, v_2, \dots, v_n . The adjacency matrix of *G*, denoted by $A(G) = (a_{ij})$, is an $n \times n$ matrix such that $a_{ij} = 1$ if there is an edge between v_i and v_j , and $a_{ij} = 0$ otherwise.
- λ_i(G) denotes the *i*th largest eigenvalue of A(G). So we have λ₁ ≥ λ₂ ≥ · · · ≥ λ_n.

Matrix and Eigenvalue

- Let *G* be a simple graph with vertices v_1, v_2, \dots, v_n . The adjacency matrix of *G*, denoted by $A(G) = (a_{ij})$, is an $n \times n$ matrix such that $a_{ij} = 1$ if there is an edge between v_i and v_j , and $a_{ij} = 0$ otherwise.
- λ_i(G) denotes the *i*th largest eigenvalue of A(G). So we have λ₁ ≥ λ₂ ≥ · · · ≥ λ_n.
- By Perron-Frobenius Theorem, λ₁ is always positive and |λ_i| ≤ λ₁ for all i ≥ 2. Let λ = max_{2≤i≤n} |λ_i| = max{|λ₂|, |λ_n|}, that is, λ is the second largest absolute eigenvalue.

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

• The expander mixing lemma: for every two subsets A and B of V(G), $|e(A, B) - \frac{d}{n}|A||B|| \le \lambda \sqrt{|A||B|}$, where e(A, B) denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

- The expander mixing lemma: for every two subsets A and B of V(G), $|e(A, B) \frac{d}{n}|A||B|| \le \lambda \sqrt{|A||B|}$, where e(A, B) denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).
- By definition, G is (d/n, λ)-jumbled, and thus a kind of pseudo-random graph.

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

- The expander mixing lemma: for every two subsets A and B of V(G), $|e(A, B) \frac{d}{n}|A||B|| \le \lambda \sqrt{|A||B|}$, where e(A, B) denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).
- By definition, G is (d/n, λ)-jumbled, and thus a kind of pseudo-random graph.
- A *d*-regular graph on *n* vertices with second largest absolute eigenvalue at most λ is called an (*n*, *d*, λ)-graph.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Research on pseudo-random graphs

 Extremal graph theory: An example Theorem (Krivelevich and Sudakov 2003) Let *G* be an (n, d, λ)-graph. If n is large enough and

$$\lambda < \frac{(\log \log n)^2}{1000 \log n (\log \log \log n)} d,$$

then G is Hamiltonian.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Research on pseudo-random graphs

 Extremal graph theory: An example Theorem (Krivelevich and Sudakov 2003) Let *G* be an (n, d, λ)-graph. If n is large enough and

$$\lambda < \frac{(\log \log n)^2}{1000 \log n (\log \log \log n)} d,$$

then G is Hamiltonian.

• Spectral graph theory: focus more on precise spectral bounds.

Toughness

• The toughness t(G) of a connected graph G is defined as $t(G) = \min\{\frac{|S|}{c(G-S)}\}$, where the minimum is taken over all proper subset $S \subset V(G)$ such that c(G-S) > 1.

Figure: toughness = 1 (Picture from Wikipedia)

• G is *t*-tough if $t(G) \ge t$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Toughness and cycles

 "Toughness at least 1" is a necessary condition for hamiltonicity.

- "Toughness at least 1" is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is Hamiltonian.

- "Toughness at least 1" is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is Hamiltonian.
- (False) Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is pancyclic.

- "Toughness at least 1" is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is Hamiltonian.
- (False) Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is pancyclic.
- Disproved by Bauer, van den Heuvel and Schmeichel (1995) who constructed *t*-tough triangle-free graphs for every *t*.

- "Toughness at least 1" is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is Hamiltonian.
- (False) Conjecture (Chvátal, 1973)
 There exists some positive t₀ such that any graph with toughness at least t₀ is pancyclic.
- Disproved by Bauer, van den Heuvel and Schmeichel (1995) who constructed *t*-tough triangle-free graphs for every *t*.
- Theorem (Alon 1995)
 For every t and g there exists a t-tough graph of girth greater than g.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ □ ● のへで

Toughness in pseudo-random graphs

• Theorem (Alon 1995)

For any connected *d*-regular graph G, $t(G) > \frac{1}{3}(\frac{d^2}{d\lambda+\lambda^2}-1)$.

Toughness in pseudo-random graphs

 Theorem (Alon 1995) For any connected *d*-regular graph *G*, *t*(*G*) > ¹/₃(^{d²}/_{dλ+λ²} − 1).
 Together with the following result: Theorem(Lubotzky, Phillips and Sarnak 1988) There are infinitely many values of *n* with (*n*, *d*, λ)-graphs *G_n* on *n* vertices with λ = √*d* − 1 such that the girth of *G_n* is at least ²/₃ log_{*d*-1} *n*.

Toughness in pseudo-random graphs

- Theorem (Alon 1995) For any connected *d*-regular graph G, $t(G) > \frac{1}{3}(\frac{d^2}{d\lambda+\lambda^2}-1)$.
- Together with the following result: Theorem(Lubotzky, Phillips and Sarnak 1988) There are infinitely many values of n with (n, d, λ) -graphs G_n on n vertices with $\lambda = \sqrt{d-1}$ such that the girth of G_n is at least $\frac{2}{3} \log_{d-1} n$.
- Corollary (Alon 1995)

There exists a positive constant *C* so that for every integer $g \ge 3$, there are infinitely many values of *n* with a graph G_n on *n* vertices whose girth is at least *g* so that $t(G_n) \ge n^{C/g}$.

Toughness in pseudo-random graphs

- Theorem (Alon 1995) For any connected *d*-regular graph G, $t(G) > \frac{1}{3}(\frac{d^2}{d\lambda+\lambda^2}-1)$.
- Together with the following result: Theorem(Lubotzky, Phillips and Sarnak 1988) There are infinitely many values of n with (n, d, λ) -graphs G_n on n vertices with $\lambda = \sqrt{d-1}$ such that the girth of G_n is at least $\frac{2}{3} \log_{d-1} n$.
- Corollary (Alon 1995)

There exists a positive constant *C* so that for every integer $g \ge 3$, there are infinitely many values of *n* with a graph G_n on *n* vertices whose girth is at least *g* so that $t(G_n) \ge n^{C/g}$.

• For every *t* and *g* there exists a *t*-tough graph of girth greater than *g*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

Improved results

• Theorem (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 2$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで

- Theorem (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 2$.
- There are infinitely many examples of graphs with $t \leq d/\lambda$.

- Theorem (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 2$.
- There are infinitely many examples of graphs with $t \le d/\lambda$.
- In particular, Petersen graph P_{10} : d = 3 and $\lambda = 2$, while $t(P_{10}) = 4/3$.

- Theorem (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 2$.
- There are infinitely many examples of graphs with $t \leq d/\lambda$.
- In particular, Petersen graph P_{10} : d = 3 and $\lambda = 2$, while $t(P_{10}) = 4/3$.
- Conjecture (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 1$.

- Theorem (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 2$.
- There are infinitely many examples of graphs with $t \leq d/\lambda$.
- In particular, Petersen graph P_{10} : d = 3 and $\lambda = 2$, while $t(P_{10}) = 4/3$.
- Conjecture (Brouwer, 1995) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - 1$.
- Theorem (G. 2019+) For any connected *d*-regular graph G, $t(G) > \frac{d}{\lambda} - \sqrt{2}$.

Related conjecture

• Conjecture (Krivelevich and Sudakov 2003) There exists a positive constant C such that for large enough n, any (n, d, λ) -graph that satisfies $d/\lambda > C$ is Hamiltonian.

Related conjecture

- Conjecture (Krivelevich and Sudakov 2003) There exists a positive constant *C* such that for large enough *n*, any (*n*, *d*, λ)-graph that satisfies *d*/λ > *C* is Hamiltonian.
- Recall: Conjecture (Chvátal, 1973) There exists some positive t_0 such that any graph with toughness greater than t_0 is Hamiltonian.

Related conjecture

- Conjecture (Krivelevich and Sudakov 2003) There exists a positive constant *C* such that for large enough *n*, any (*n*, *d*, λ)-graph that satisfies *d*/λ > *C* is Hamiltonian.
- Recall: Conjecture (Chvátal, 1973) There exists some positive t_0 such that any graph with toughness greater than t_0 is Hamiltonian.
- Chvátal's conjecture implies the conjecture of Krivelevich and Sudakov.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで

Generalized connectivity

 Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \ge 2$, Chartrand, Kapoor, Lesniak and Lick defined the *l*-connectivity $\kappa_l(G)$ of a graph *G* to be the minimum number of vertices of *G* whose removal produces a disconnected graph with at least *l* components or a graph with fewer than *l* vertices.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \ge 2$, Chartrand, Kapoor, Lesniak and Lick defined the *l*-connectivity $\kappa_l(G)$ of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices.
- When l = 2, it is the classical connectivity $\kappa(G)$.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \ge 2$, Chartrand, Kapoor, Lesniak and Lick defined the *l*-connectivity $\kappa_l(G)$ of a graph *G* to be the minimum number of vertices of *G* whose removal produces a disconnected graph with at least *l* components or a graph with fewer than *l* vertices.
- When l = 2, it is the classical connectivity $\kappa(G)$.
- By definition, for a noncomplete connected graph G, we have $t(G) = \min_{2 \le l \le \alpha} \{\frac{\kappa_l(G)}{l}\}$ where α is the independence number of G.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ 亘 のへぐ

• Theorem (Fiedler 1973) For a *d*-regular graph, $\kappa \ge d - \lambda_2$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● のへで

- Theorem (Fiedler 1973) For a *d*-regular graph, $\kappa \ge d - \lambda_2$.
- Theorem (Krivelevich and Sudakov 2006) For an (n, d, λ) -graph with $d \le n/2$, $\kappa \ge d - \frac{36\lambda^2}{d}$.

- Theorem (Fiedler 1973) For a *d*-regular graph, $\kappa > d - \lambda_2$.
- Theorem (Krivelevich and Sudakov 2006) For an (n, d, λ) -graph with $d \le n/2$, $\kappa \ge d - \frac{36\lambda^2}{d}$.
- Theorem (G. 2019+) Let G be an (n, d, λ) -graph with $d \leq \alpha \cdot n$ for a constant

 $0 < \alpha < 1$. Let c be a constant with $c \ge \frac{1 + \sqrt{1 + \alpha + \frac{1}{\ell - 1}}}{1 - \alpha}$

(日) (日) (日) (日) (日) (日) (日)

Then the ℓ -connectivity of G satisfies

$$\kappa_{\ell}(G) \ge d - \frac{(c \cdot \lambda)^2}{d}.$$

Thank You