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Basic definitions Toughness Generalized connectivity

Background

Random graph G(n, p) model: a graph with n vertices is
constructed by adding each edge randomly and
independently with probability p.

A pseudo-random graph with n vertices of edge density p
is a graph that behaves like a truly random graph G(n, p).
It was Thomason who first introduced the quantitative
definition of pseudo-random graphs, by defining the term of
jumbled graphs.
A graph G is (p, α)-jumbled (where 0 < p < 1 ≤ α) if every
vertex subset U ⊂ V (G) satisfies:∣∣∣∣e(U)− p

(
|U |
2

)∣∣∣∣ ≤ α|U |,
where p is the density and α controls the deviation.
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Matrix and Eigenvalue

Let G be a simple graph with vertices v1, v2, · · · , vn. The
adjacency matrix of G, denoted by A(G) = (aij), is an
n× n matrix such that aij = 1 if there is an edge between
vi and vj , and aij = 0 otherwise.

λi(G) denotes the ith largest eigenvalue of A(G). So we
have λ1 ≥ λ2 ≥ · · · ≥ λn.
By Perron-Frobenius Theorem, λ1 is always positive and
|λi| ≤ λ1 for all i ≥ 2. Let
λ = max2≤i≤n |λi| = max{|λ2|, |λn|}, that is, λ is the
second largest absolute eigenvalue.
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Pseudo-random graphs

Let G be a d-regular graph on n vertices.

The expander mixing lemma: for every two subsets A and
B of V (G),

∣∣e(A,B)− d
n |A||B|

∣∣ ≤ λ√|A||B|, where e(A,B)
denotes the number of edges with one end in A and the
other one in B (edges with both ends in A ∩B are counted
twice).

By definition, G is (d/n, λ)-jumbled, and thus a kind of
pseudo-random graph.
A d-regular graph on n vertices with second largest
absolute eigenvalue at most λ is called an (n, d, λ)-graph.
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Research on pseudo-random graphs

Extremal graph theory: An example
Theorem (Krivelevich and Sudakov 2003)
Let G be an (n, d, λ)-graph. If n is large enough and

λ <
(log log n)2

1000 log n(log log log n)
d,

then G is Hamiltonian.

Spectral graph theory: focus more on precise spectral
bounds.
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Toughness

The toughness t(G) of a connected graph G is defined as
t(G) = min{ |S|

c(G−S)}, where the minimum is taken over all
proper subset S ⊂ V (G) such that c(G− S) > 1.

Figure: toughness = 1 (Picture from Wikipedia)

G is t-tough if t(G) ≥ t.
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Toughness and cycles

“Toughness at least 1” is a necessary condition for
hamiltonicity.

Conjecture (Chvátal, 1973)
There exists some positive t0 such that any graph with
toughness at least t0 is Hamiltonian.
(False) Conjecture (Chvátal, 1973)
There exists some positive t0 such that any graph with
toughness at least t0 is pancyclic.
Disproved by Bauer, van den Heuvel and Schmeichel
(1995) who constructed t-tough triangle-free graphs for
every t.
Theorem (Alon 1995)
For every t and g there exists a t-tough graph of girth
greater than g.
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Toughness in pseudo-random graphs

Theorem (Alon 1995)
For any connected d-regular graph G, t(G) > 1

3(
d2

dλ+λ2
− 1).

Together with the following result:
Theorem(Lubotzky, Phillips and Sarnak 1988)
There are infinitely many values of n with (n, d, λ)-graphs
Gn on n vertices with λ =

√
d− 1 such that the girth of Gn

is at least 2
3 logd−1 n.

Corollary (Alon 1995)
There exists a positive constant C so that for every integer
g ≥ 3, there are infinitely many values of n with a graph Gn
on n vertices whose girth is at least g so that t(Gn) ≥ nC/g.
For every t and g there exists a t-tough graph of girth
greater than g.
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Improved results

Theorem (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 2.

There are infinitely many examples of graphs with t ≤ d/λ.
In particular, Petersen graph P10: d = 3 and λ = 2, while
t(P10) = 4/3.
Conjecture (Brouwer, 1995)
For any connected d-regular graph G, t(G) > d

λ − 1.
Theorem (G. 2019+)
For any connected d-regular graph G, t(G) > d

λ −
√
2.
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Related conjecture

Conjecture (Krivelevich and Sudakov 2003)
There exists a positive constant C such that for large
enough n, any (n, d, λ)-graph that satisfies d/λ > C is
Hamiltonian.

Recall: Conjecture (Chvátal, 1973)
There exists some positive t0 such that any graph with
toughness greater than t0 is Hamiltonian.
Chvátal’s conjecture implies the conjecture of Krivelevich
and Sudakov.
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There exists some positive t0 such that any graph with
toughness greater than t0 is Hamiltonian.
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Generalized connectivity

Motivated by graph toughness, it is interesting to see how
many vertices need to remove if we want a graph with a
fixed number of components.

Given an integer l ≥ 2, Chartrand, Kapoor, Lesniak and
Lick defined the l-connectivity κl(G) of a graph G to be the
minimum number of vertices of G whose removal produces
a disconnected graph with at least l components or a
graph with fewer than l vertices.
When l = 2, it is the classical connectivity κ(G).
By definition, for a noncomplete connected graph G, we
have t(G) = min2≤l≤α{κl(G)

l } where α is the independence
number of G.
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Results

Theorem (Fiedler 1973)
For a d-regular graph, κ ≥ d− λ2.

Theorem (Krivelevich and Sudakov 2006)
For an (n, d, λ)-graph with d ≤ n/2, κ ≥ d− 36λ2

d .
Theorem (G. 2019+)
Let G be an (n, d, λ)-graph with d ≤ α · n for a constant

0 < α < 1. Let c be a constant with c ≥
1 +

√
1 + α+ 1

`−1

1− α
.

Then the `-connectivity of G satisfies

κ`(G) ≥ d−
(c · λ)2

d
.
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