Toughness in pseudo-random graphs

Xiaofeng Gu
(University of West Georgia)

7th annual Mississippi Discrete Math Workshop

October 27, 2019

Background

- Random graph $G(n, p)$ model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.

Background

- Random graph $G(n, p)$ model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with n vertices of edge density p is a graph that behaves like a truly random graph $G(n, p)$.

Background

- Random graph $G(n, p)$ model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with n vertices of edge density p is a graph that behaves like a truly random graph $G(n, p)$.
- It was Thomason who first introduced the quantitative definition of pseudo-random graphs, by defining the term of jumbled graphs.

Background

- Random graph $G(n, p)$ model: a graph with n vertices is constructed by adding each edge randomly and independently with probability p.
- A pseudo-random graph with n vertices of edge density p is a graph that behaves like a truly random graph $G(n, p)$.
- It was Thomason who first introduced the quantitative definition of pseudo-random graphs, by defining the term of jumbled graphs.
- A graph G is (p, α)-jumbled (where $0<p<1 \leq \alpha$) if every vertex subset $U \subset V(G)$ satisfies:

$$
\left|e(U)-p\binom{|U|}{2}\right| \leq \alpha|U|,
$$

where p is the density and α controls the deviation.

Matrix and Eigenvalue

- Let G be a simple graph with vertices $v_{1}, v_{2}, \cdots, v_{n}$. The adjacency matrix of G, denoted by $A(G)=\left(a_{i j}\right)$, is an $n \times n$ matrix such that $a_{i j}=1$ if there is an edge between v_{i} and v_{j}, and $a_{i j}=0$ otherwise.

Matrix and Eigenvalue

- Let G be a simple graph with vertices $v_{1}, v_{2}, \cdots, v_{n}$. The adjacency matrix of G, denoted by $A(G)=\left(a_{i j}\right)$, is an $n \times n$ matrix such that $a_{i j}=1$ if there is an edge between v_{i} and v_{j}, and $a_{i j}=0$ otherwise.
- $\lambda_{i}(G)$ denotes the i th largest eigenvalue of $A(G)$. So we have $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.

Matrix and Eigenvalue

- Let G be a simple graph with vertices $v_{1}, v_{2}, \cdots, v_{n}$. The adjacency matrix of G, denoted by $A(G)=\left(a_{i j}\right)$, is an $n \times n$ matrix such that $a_{i j}=1$ if there is an edge between v_{i} and v_{j}, and $a_{i j}=0$ otherwise.
- $\lambda_{i}(G)$ denotes the i th largest eigenvalue of $A(G)$. So we have $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
- By Perron-Frobenius Theorem, λ_{1} is always positive and $\left|\lambda_{i}\right| \leq \lambda_{1}$ for all $i \geq 2$. Let
$\lambda=\max _{2 \leq i \leq n}\left|\lambda_{i}\right|=\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\}$, that is, λ is the second largest absolute eigenvalue.

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

- The expander mixing lemma: for every two subsets A and B of $V(G),\left|e(A, B)-\frac{d}{n}\right| A| | B| | \leq \lambda \sqrt{|A||B|}$, where $e(A, B)$ denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

- The expander mixing lemma: for every two subsets A and B of $V(G),\left|e(A, B)-\frac{d}{n}\right| A| | B| | \leq \lambda \sqrt{|A||B|}$, where $e(A, B)$ denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).
- By definition, G is $(d / n, \lambda)$-jumbled, and thus a kind of pseudo-random graph.

Pseudo-random graphs

Let G be a d-regular graph on n vertices.

- The expander mixing lemma: for every two subsets A and B of $V(G),\left|e(A, B)-\frac{d}{n}\right| A| | B| | \leq \lambda \sqrt{|A||B|}$, where $e(A, B)$ denotes the number of edges with one end in A and the other one in B (edges with both ends in $A \cap B$ are counted twice).
- By definition, G is $(d / n, \lambda)$-jumbled, and thus a kind of pseudo-random graph.
- A d-regular graph on n vertices with second largest absolute eigenvalue at most λ is called an (n, d, λ)-graph.

Research on pseudo-random graphs

- Extremal graph theory: An example Theorem (Krivelevich and Sudakov 2003) Let G be an (n, d, λ)-graph. If n is large enough and

$$
\lambda<\frac{(\log \log n)^{2}}{1000 \log n(\log \log \log n)} d
$$

then G is Hamiltonian.

Research on pseudo-random graphs

- Extremal graph theory: An example Theorem (Krivelevich and Sudakov 2003) Let G be an (n, d, λ)-graph. If n is large enough and

$$
\lambda<\frac{(\log \log n)^{2}}{1000 \log n(\log \log \log n)} d
$$

then G is Hamiltonian.

- Spectral graph theory: focus more on precise spectral bounds.

Toughness

- The toughness $t(G)$ of a connected graph G is defined as $t(G)=\min \left\{\frac{|S|}{c(G-S)}\right\}$, where the minimum is taken over all proper subset $S \subset V(G)$ such that $c(G-S)>1$.

Figure: toughness $=1$ (Picture from Wikipedia)

- G is t-tough if $t(G) \geq t$.

Toughness and cycles

- "Toughness at least 1 " is a necessary condition for hamiltonicity.

Toughness and cycles

- "Toughness at least 1 " is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is Hamiltonian.

Toughness and cycles

- "Toughness at least 1 " is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is Hamiltonian.

- (False) Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is pancyclic.

Toughness and cycles

- "Toughness at least 1 " is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is Hamiltonian.

- (False) Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is pancyclic.

- Disproved by Bauer, van den Heuvel and Schmeichel (1995) who constructed t-tough triangle-free graphs for every t.

Toughness and cycles

- "Toughness at least 1 " is a necessary condition for hamiltonicity.
- Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is Hamiltonian.

- (False) Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness at least t_{0} is pancyclic.

- Disproved by Bauer, van den Heuvel and Schmeichel (1995) who constructed t-tough triangle-free graphs for every t.
- Theorem (Alon 1995)

For every t and g there exists a t-tough graph of girth greater than g.

Toughness in pseudo-random graphs

- Theorem (Alon 1995)

For any connected d-regular graph $G, t(G)>\frac{1}{3}\left(\frac{d^{2}}{d \lambda+\lambda^{2}}-1\right)$.

Toughness in pseudo-random graphs

- Theorem (Alon 1995)

For any connected d-regular graph $G, t(G)>\frac{1}{3}\left(\frac{d^{2}}{d \lambda+\lambda^{2}}-1\right)$.

- Together with the following result:

Theorem(Lubotzky, Phillips and Sarnak 1988)
There are infinitely many values of n with (n, d, λ)-graphs G_{n} on n vertices with $\lambda=\sqrt{d-1}$ such that the girth of G_{n} is at least $\frac{2}{3} \log _{d-1} n$.

Toughness in pseudo-random graphs

- Theorem (Alon 1995)

For any connected d-regular graph $G, t(G)>\frac{1}{3}\left(\frac{d^{2}}{d \lambda+\lambda^{2}}-1\right)$.

- Together with the following result:

Theorem(Lubotzky, Phillips and Sarnak 1988)
There are infinitely many values of n with (n, d, λ)-graphs
G_{n} on n vertices with $\lambda=\sqrt{d-1}$ such that the girth of G_{n} is at least $\frac{2}{3} \log _{d-1} n$.

- Corollary (Alon 1995)

There exists a positive constant C so that for every integer $g \geq 3$, there are infinitely many values of n with a graph G_{n} on n vertices whose girth is at least g so that $t\left(G_{n}\right) \geq n^{C / g}$.

Toughness in pseudo-random graphs

- Theorem (Alon 1995)

For any connected d-regular graph $G, t(G)>\frac{1}{3}\left(\frac{d^{2}}{d \lambda+\lambda^{2}}-1\right)$.

- Together with the following result:

Theorem(Lubotzky, Phillips and Sarnak 1988)
There are infinitely many values of n with (n, d, λ)-graphs
G_{n} on n vertices with $\lambda=\sqrt{d-1}$ such that the girth of G_{n} is at least $\frac{2}{3} \log _{d-1} n$.

- Corollary (Alon 1995)

There exists a positive constant C so that for every integer $g \geq 3$, there are infinitely many values of n with a graph G_{n} on n vertices whose girth is at least g so that $t\left(G_{n}\right) \geq n^{C / g}$.

- For every t and g there exists a t-tough graph of girth greater than g.

Improved results

- Theorem (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-2$.

Improved results

- Theorem (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-2$.

- There are infinitely many examples of graphs with $t \leq d / \lambda$.

Improved results

- Theorem (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-2$.

- There are infinitely many examples of graphs with $t \leq d / \lambda$.
- In particular, Petersen graph $P_{10}: d=3$ and $\lambda=2$, while $t\left(P_{10}\right)=4 / 3$.

Improved results

- Theorem (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-2$.

- There are infinitely many examples of graphs with $t \leq d / \lambda$.
- In particular, Petersen graph $P_{10}: d=3$ and $\lambda=2$, while $t\left(P_{10}\right)=4 / 3$.
- Conjecture (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-1$.

Improved results

- Theorem (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-2$.

- There are infinitely many examples of graphs with $t \leq d / \lambda$.
- In particular, Petersen graph $P_{10}: d=3$ and $\lambda=2$, while $t\left(P_{10}\right)=4 / 3$.
- Conjecture (Brouwer, 1995)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-1$.

- Theorem (G. 2019+)

For any connected d-regular graph $G, t(G)>\frac{d}{\lambda}-\sqrt{2}$.

Related conjecture

- Conjecture (Krivelevich and Sudakov 2003) There exists a positive constant C such that for large enough n, any (n, d, λ)-graph that satisfies $d / \lambda>C$ is Hamiltonian.

Related conjecture

- Conjecture (Krivelevich and Sudakov 2003)

There exists a positive constant C such that for large enough n, any (n, d, λ)-graph that satisfies $d / \lambda>C$ is Hamiltonian.

- Recall: Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness greater than t_{0} is Hamiltonian.

Related conjecture

- Conjecture (Krivelevich and Sudakov 2003)

There exists a positive constant C such that for large enough n, any (n, d, λ)-graph that satisfies $d / \lambda>C$ is Hamiltonian.

- Recall: Conjecture (Chvátal, 1973)

There exists some positive t_{0} such that any graph with toughness greater than t_{0} is Hamiltonian.

- Chvátal's conjecture implies the conjecture of Krivelevich and Sudakov.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \geq 2$, Chartrand, Kapoor, Lesniak and Lick defined the l-connectivity $\kappa_{l}(G)$ of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \geq 2$, Chartrand, Kapoor, Lesniak and Lick defined the l-connectivity $\kappa_{l}(G)$ of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices.
- When $l=2$, it is the classical connectivity $\kappa(G)$.

Generalized connectivity

- Motivated by graph toughness, it is interesting to see how many vertices need to remove if we want a graph with a fixed number of components.
- Given an integer $l \geq 2$, Chartrand, Kapoor, Lesniak and Lick defined the l-connectivity $\kappa_{l}(G)$ of a graph G to be the minimum number of vertices of G whose removal produces a disconnected graph with at least l components or a graph with fewer than l vertices.
- When $l=2$, it is the classical connectivity $\kappa(G)$.
- By definition, for a noncomplete connected graph G, we have $t(G)=\min _{2 \leq l \leq \alpha}\left\{\frac{\kappa_{l}(G)}{l}\right\}$ where α is the independence number of G.

Results

- Theorem (Fiedler 1973)

For a d-regular graph, $\kappa \geq d-\lambda_{2}$.

Results

- Theorem (Fiedler 1973)

For a d-regular graph, $\kappa \geq d-\lambda_{2}$.

- Theorem (Krivelevich and Sudakov 2006)

For an (n, d, λ)-graph with $d \leq n / 2, \kappa \geq d-\frac{36 \lambda^{2}}{d}$.

Results

- Theorem (Fiedler 1973)

For a d-regular graph, $\kappa \geq d-\lambda_{2}$.

- Theorem (Krivelevich and Sudakov 2006)

For an (n, d, λ)-graph with $d \leq n / 2, \kappa \geq d-\frac{36 \lambda^{2}}{d}$.

- Theorem (G. 2019+)

Let G be an (n, d, λ)-graph with $d \leq \alpha \cdot n$ for a constant
$0<\alpha<1$. Let c be a constant with $c \geq \frac{1+\sqrt{1+\alpha+\frac{1}{\ell-1}}}{1-\alpha}$.
Then the ℓ-connectivity of G satisfies

$$
\kappa_{\ell}(G) \geq d-\frac{(c \cdot \lambda)^{2}}{d}
$$

Thank You

