CL-shellable posets with no EL-shellings

Tiansi Li

Washington University in St. Louis

October 26, 2019

A partially ordered set (also called poset) is a set P equipped with a partial order, which we usually denote with \leq

- Reflexivity: $\forall x \in P, x \leq x$
- Antisymmetry: If $x \leq y$ and $y \leq x$, then x = y
- Transitivity: If $x \leq y$ and $y \leq z$, then $x \leq z$

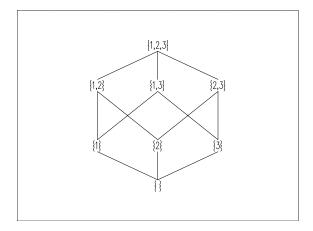


Figure: Boolean lattice on [3]

Hasse Diagrams

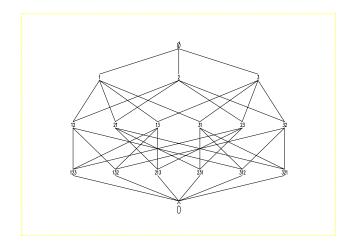
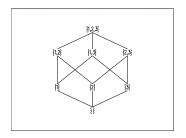
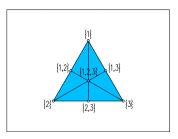


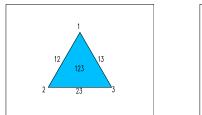
Figure: Injective words poset on [3]

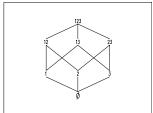
Let *P* be a finite poset. The order complex of *P*, denoted by ΔP , is the simplicial complex with $V(\Delta P) = P$ and $F = \{v_1, v_2, \ldots, v_k\} \in \Delta P$ if $v_1 < v_2 < \cdots < v_k$ in *P*.



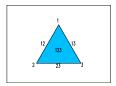


Let Δ be a finite simplicial complex. The face poset of Δ , denoted by $P(\Delta)$, is the poset whose elements are faces of Δ and partially ordered by face inclusion.





Let Δ be a finite simplicial complex, then the order complex of its face poset is the barycentric subdivision of Δ .



Let Δ be a finite simplicial complex. Δ is said to be shellable if its facets can be ordered as F_1, F_2, \ldots, F_k such that for each *i*, $F_i \cap (\bigcup_{j=1}^{i-1} F_j)$ is pure of codimension 1 in F_i .

We call a poset P shellable if ΔP is shellable.

Shellable Complex

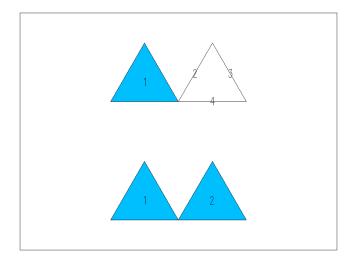


Figure: A shellable complex and a non-shellable complex

Theorem(Björner-Wachs 96)

A shellable simplicial complex has the homotopy type of a wedge of spheres (in varying dimensions), where for each *i*, the number of *i*-spheres is the number of *i*-facets whose entire boundary is contained in the union of the earlier facets. Such facets are usually called homology facets.

Corollary

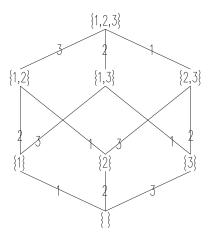
If Δ is shellable then for all i, $\tilde{H}_i(\Delta, \mathbb{Z}) \cong \tilde{H}^i(\Delta, \mathbb{Z}) \cong \mathbb{Z}^{r_i}$, where r_i is the number of homology *i*-facets in Δ .

An edge labeling of a bounded poset P is a map $\lambda : E(P) \to \Lambda$, where E(P) is the set of edges of the Hasse diagram of P, i.e., the covering relations $x \lt y$ of P, and Λ is some poset (usually the integers \mathbb{Z} with its natural total order relation).

Given an edge labeling $\lambda : E(P) \to \Lambda$, one can associate a word $\lambda(c) = \lambda(\hat{0}, x_1)\lambda(x_1, x_2), \dots, \lambda(x_t, \hat{1})$ with each maximal chain $c = (\hat{0} < x_1 < \dots < x_t < \hat{1})$. We say that c is weakly increasing if the associated word $\lambda(c)$ is weakly increasing. That is, c is weakly increasing if $\lambda(\hat{0}, x_1) \leq \lambda(x_1, x_2), \dots, \leq \lambda(x_t, \hat{1})$.

EL-Labeling

Let *P* be a bounded poset. An edge-lexicographical labeling (EL-labeling, for short) of *P* is an edge labeling such that in each closed interval [x, y] of *P*, there is a unique weakly increasing maximal chain, which lexicographically precedes all other maximal chains of [x, y].



Theorem(Björner 80, Björner-Wachs 96)

Suppose P is a bounded poset with an EL-labeling. Then the lexicographic order of the maximal chains of P is a shelling of $\Delta(P)$. Moreover, the corresponding order of the maximal chains of \overline{P} is a shelling of $\Delta(\overline{P})$.

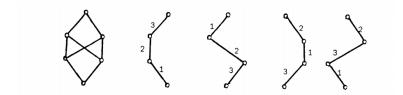
Corollary(Björner-Wachs 96)

Suppose *P* is a poset for which \hat{P} admits an EL-labeling. Then *P* has the homotopy type of a wedge of spheres, where the number of *i*-spheres is the number of decreasing maximal (i + 2)-chains of \hat{P} . The decreasing maximal (i + 2)-chains, with $\hat{0}$ and $\hat{1}$ removed, form a basis for cohomology $\tilde{H}^i(P,\mathbb{Z})$).

For a bounded poset P, let ME(P) be the set of pairs (c, x < y) consisting of a maximal chain c and an edge x < y along that chain. A chain-edge labeling of P is a map $\lambda : ME(P) \to \Lambda$, where Λ is some poset, satisfying: If two maximal chains coincide along their bottom d edges, then their labels also coincide along these edges.

It follows from the definition that each maximal chain r of $[\hat{0}, x]$ determines a unique restriction of λ to ME([x, y]). This enables one to talk about increasing and decreasing maximal chains and lexicographic order of maximal chains in the rooted interval $[x, y]_r$.

Let *P* be a bounded poset. A chain-lexicographic labeling (CL-labeling, for short) of *P* is a chain-edge labeling such that in each closed rooted interval $[x, y]_r$ of *P*, there is a unique weakly increasing maximal chain, which lexicographically precedes all other maximal chains of $[x, y]_r$. A poset that admits a CL-labeling is said to be CL-shellable.



Theorem(Björner-Wachs 96)

Suppose P is a bounded poset with an CL-labeling. Then the lexicographic order of the maximal chains of P is a shelling of $\Delta(P)$. Moreover, the corresponding order of the maximal chains of \overline{P} is a shelling of $\Delta(\overline{P})$.

Corollary

 $\mathsf{EL}\text{-shellability} \Rightarrow \mathsf{CL}\text{-shellability} \Rightarrow \mathsf{Shellability}.$

Question(Björner-Wachs 83)

Is every CL-shellable poset EL-shellable?

A bounded poset P is said to admit a recursive atom ordering if its length l(P) is 1, or if l(P) > 1 and there is an ordering $a_1, a_2, ..., a_t$ of the atoms of P that satisfies:

- For all j = 1, 2, ..., t the interval [a_j, 1̂] admits a recursive atom ordering in which the atoms of [a_j, 1̂] that belong to [a_i, 1̂] for some i < j come first.
- For all i < j, if $a_i, a_j < y$ then there is a k < j and an atom z of $[a_j, \hat{1}]$ such that $a_k < z \le y$.

A recursive coatom ordering is a recursive atom ordering of the dual poset P^* .

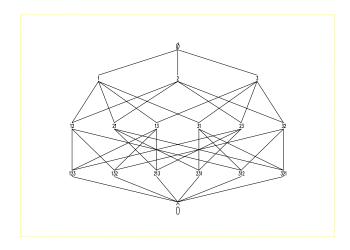


Figure: Injective words poset on [3]

Theorem(Björner-Wachs 83, 96)

A bounded poset P is CL-shellable if and only if P admits a recursive atom ordering.

Theorem(Björner-Wachs 83)

An ordering of the facets of a simplicial complex Δ is a shelling if and only if the ordering is a recursive coatom ordering of the face poset $P(\Delta)$.

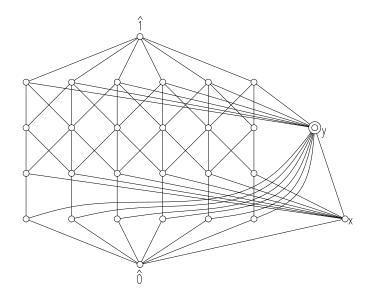
Theorem(Li 19)

A bounded poset P is EL-shellable if and only if P admits a recursive atom ordering such that, for each pair (x, r), the atom orderings of $[x, \hat{1}]_r$ are the same for all r.

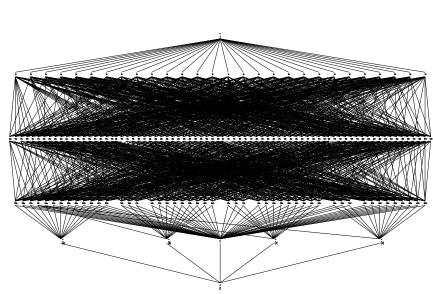
Question(Björner-Wachs 83)

Is every CL-shellable poset EL-shellable?

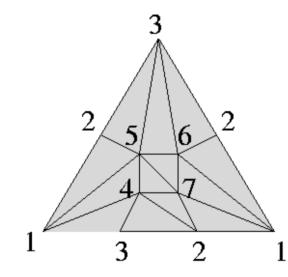
Ungraded Example



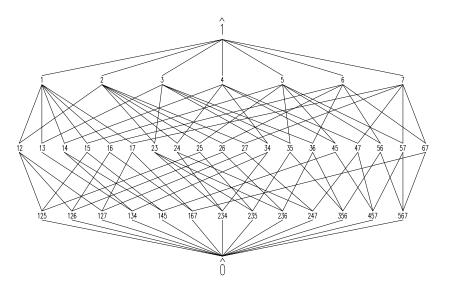
Graded Example



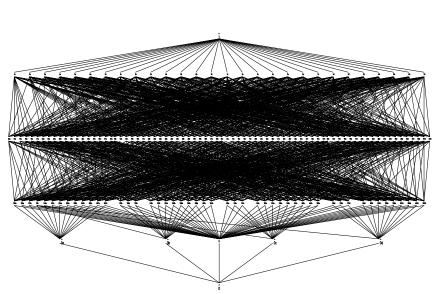
Hachimori's Complex



Dual of P(H)



Graded Example



Question

Is there a complete characterization of CL-shellable posets that are not EL-shellable?

Thank you!