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Additive bases in N

Let (G,+) be an infinite commutative semigroup. If A is a subset
of G, we define

hA = {a1 + · · ·+ ah : a1, . . . ,ah ∈ A}.

For two sets X ,Y , we write X ∼ Y if their symmetric difference
(X \ Y ) ∪ (Y \ X ) is finite.
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We say A is a basis of order at most h if hA ∼ G. In other words,
all but finitely many elements of G can be written as a sum of
exactly h elements of A.

If h is the smallest such number, we say A is a basis of order h
and write

ord∗G(A) = h.

If A is not a basis, we define ord∗G(A) =∞.
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From specific bases...

Classical additive number theory deals with specific bases of N (e.g.
the squares, k -th powers, the primes).

Examples:

If A = {n2 : n ≥ 0}, then ord∗N(A) = 4 (Lagrange’s theorem).

If A = {nk : n ≥ 0}, then ord∗N(A) = G(k) ≤ (k + o(1)) log k
(Waring’s problem).

If A is the set of primes, then ord∗N(A) ≤ 4 (Goldbach’s conjecture:
ord∗N(A) = 3).
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... to generic bases.

Combinatorial number theory deals with properties of a generic basis.

Schnirelmann’s theorem (1930): If A ⊂ N has Shnirelmann density

σ(A) := inf
n∈Z+

|A ∩ [1,n]|
n

> 0,

and 0 ∈ A, then ord∗NA <∞.
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Removing elements from a basis

Erdős-Graham (1980) initiated the following research direction: If we
remove one element from a basis, then is the new set still a basis? If
yes, then what can we say about its order?

The following questions have been primarily studied in N, but they also
makes sense in any semigroups G.
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Erdős-Graham (1980) initiated the following research direction: If we
remove one element from a basis, then is the new set still a basis? If
yes, then what can we say about its order?

The following questions have been primarily studied in N, but they also
makes sense in any semigroups G.

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 6 / 24



Let A be a basis of order ≤ h of G (i.e. hA ∼ G) and a ∈ A.

1 (Erdős-Graham 1980) When is A \ {a} still a basis (of a possibly
different order)?

2 (Erdős-Graham 1980) If A \ {a} is still a basis, then is its order
bounded in terms of h?

3 (Grekos 1982) How many “bad” elements a ∈ A are there?

4 (Grekos 1997) If A \ {a} is still a basis, then what is the “typical”
order of the new basis?

5 (Nathanson 1982) What if instead of removing an element, we
remove a subset F ⊂ A of size k ≥ 1?
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In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and
B. Girard, we study these questions when G is a group.

Why groups?

Groups have more structures and are easier to work with.

Almost all results and arguments in N can be repeated verbatim in
Z.

The problem makes sense, since in any group and for any h, there
exists a basis with order h.

Existing techniques are very specific to N (and Z). If one wants to
prove results for general groups, new ideas are required.

From now on, G is an infinite abelian group.
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The Erdős-Graham criterion

Suppose hA ∼ G. A finite subset F ⊂ A is said to be regular if A \ F is
still a basis, and exceptional otherwise.

In particular, an element a ∈ A is regular if A \ {a} is still a basis, and
exceptional otherwise.

Theorem (Erdős-Graham 1980)
Let A ⊂ N be a basis of N and a ∈ A. Then a is regular (i.e., A \ {a} is
still a basis) if and only if

gcd(A \ {a} − A \ {a}) = 1.
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The Erdős-Graham criterion

Suppose hA ∼ G. A finite subset F ⊂ A is said to be regular if A \ F is
still a basis, and exceptional otherwise.

In particular, an element a ∈ A is regular if A \ {a} is still a basis, and
exceptional otherwise.
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Theorem (Erdős-Graham 1980)
Let A be a basis of N and a ∈ A. Then a is regular (i.e., A \ {a} is still a
basis) if and only if

gcd(A \ {a} − A \ {a}) = 1.

Theorem (Bienvenu-Girard-L. 2019+)
Let A be a basis of G and F ⊂ A is a finite subset. Then F is regular
(i.e., A \ F is still a basis) if and only if

〈A \ F − A \ F 〉 = G.

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 10 / 24
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Theorem (Bienvenu-Girard-L. 2019+)
Let A be a basis of G and F ⊂ A is a finite subset. Then F is regular
(i.e., A \ F is still a basis) if and only if

〈A \ F − A \ F 〉 = G.

Previous results: Nash-Nathanson 1985 (G = N, F arbitrary),
Lambert-L.-Plagne 2017 (G arbitrary, F = {a}).
The “only if” direction is easy to see: Suppose for a contradiction
that

H := 〈A \ F − A \ F 〉 � G.

Then for any a,a′ ∈ A \ F , a and a′ lie in the same coset of H.
Hence, for any s, s(A \ F ) lies in a coset of H, and A \ F cannot be
a basis of order s.
This criterion is not true when F is infinite.
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The maximum order of the new basis

Define

XG(h) = max
hA∼N

max{ord∗(A \ {a}) : A \ {a} is still a basis}.

Erdős and Graham proved that

(1/4 + o(1))h2 ≤ XN(h) ≤ (5/4 + o(1))h2.

The current best bounds are

(1/3 + o(1))h2 ≤ XN(h) ≤ (1/2 + o(1))h2.

and the exact asymptotic for XN(h) is unknown.

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 12 / 24



The maximum order of the new basis

Define

XG(h) = max
hA∼N

max{ord∗(A \ {a}) : A \ {a} is still a basis}.
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By adapting Erdős-Graham’s argument, Lambert-L.-Plagne (2017)
proved that

XG(h) = OG(h2)

for various groups G, including R,Q,Zd ,Zp.

We also proved that XG(2) ≤ 5 and XG(3) ≤ 17 for any G. However, it
was not known if for any G and h, XG(h) <∞, not to mention if XG(h)
can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis,
Bienvenu-Girard-L. (2019+) prove that

Theorem
For any group G and h, we have XG(h) ≤ h3 − h + 1.

The truth may be that XG(h) = O(h2).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 13 / 24
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can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis,
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An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),

3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



An invariant mean d on G is a finitely-additive translation-invariant
probability measure on G, i.e.

1 if A1, . . . ,An ⊂ G are disjoint, then

d (∪n
i=1Ai) =

n∑
i=1

d(Ai),

2 for all A ⊂ G and x ∈ G, we have d(x + A) = d(A),
3 d(G) = 1.

It is well known that such measures exist (in other words, all abelian
groups are amenable).

However, even in Z, the construction of an invariant mean is not
explicit, and requires the axiom of choice (e.g. ultrafilters or the
Hahn-Banach theorem).

Thái Hoàng Lê Additive bases in groups MS Discrete Math Workshop 14 / 24



Recall that

XG(h) = max
hA∼G

max{ord∗(A \ {a}) : A \ {a} is still a basis}.

We define

XG(h, k) = max
hA∼G

max{ord∗(A \ F ) : F ⊂ A, |F | = k ,A \ F is still a basis}.
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Theorem (Nash-Nathanson 1985, Nathanson 1984)
For fixed k and h→∞, we have

XN(h, k)�k hk+1

and also
XN(h, k)�k hk+1.

Again, the proof is very specific to N. Using invariant means, we show
that

Theorem (Bienvenu-Girard-L. (2019+))
For any group G, fixed k and h→∞, we have

XG(h, k)�k h2k+1

The truth may be that XG(h, k)�k hk+1 for all groups G.
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For any group G, fixed k we have

XG(h, k)�k h2k+1

as k →∞.

For a particular group G, the behavior of XG(h) and XG(h, k) may be
different.

If G is σ-finite, i.e. G = ∪∞i=1Gi , where G1 ⊂ G2 ⊂ · · · are finite
groups, then

XG(h, k)�k hk+1.

If G has exponent ` (i.e. `x = 0∀x ∈ G), then

XG(h, k)�` `
2kh.

When k = 1 and ` is a prime power, we have

XG(h) ≤ `h + O`(1).
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It is interesting to study the exact asymptotic of XG(h, k) and XG(h) for
a fixed group G.

The only groups for which we know the exact asymptotic of XG(h) are
groups having exponent 2, and we have

XG(h) ∼ 2h

as h→∞.
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The number of exceptional elements

Recall that a ∈ A is called exceptional if A \ {a} is not a basis.

It is
natural to ask how many exceptional elements are there. Define

EG(h) = max
hA∼G

#exceptional elements of A.

Theorem (Plagne 2008)

As h→∞, we have EN(h) ∼ 2
√

h
log h .

Theorem (Lambert-L.-Plagne 2017)
For any group G, we have 0 ≤ EG(h) ≤ h− 1. As far as general groups
are concerned, these inequalities are best possible.
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Essential subsets

Recall
EG(h) = max

hA∼G
#exceptional elements of A,

and EG(h) ≤ h − 1.

A subset F ⊂ A is called exceptional if A \ F is not a basis. We are
tempted to define

EG(h, k) = max
hA∼G

#exceptional subsets of size k of A.

However, if a is exceptional, then so is any set F containing a, and
hence EG(h, k) =∞.
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Deschamps-Farhi (2007): A subset F ⊂ A is called essential if it is
exceptional and minimal w/r to inclusion (i.e. F ′ is not exceptional for
any F ′ ( F ).

In other words, F is essential if A \ F is not a basis, but A \ F ′ is a basis
for any F ′ ( F .

{a} is essential⇔ {a} is exceptional, but this is not true when |F | ≥ 2.

Theorem (Deschamps-Farhi 2007)
For any basis A of order h of N, A has only finitely many essential
subsets. However, this number cannot be bounded in terms of h alone.
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Define

EG(h, k) = max
hA∼G

#essential subsets of size k of A.

Theorem (Hegarty 2010)
For fixed h and k →∞, we have

EN(h, k) ∼ (h − 1)
log k

log log k
.

For fixed k and h→∞, we have

EN(h, k) �k

(
hk

log h

) 1
k+1

.
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Deschamps-Farhi’s proof works only in N (and Z). Using a completely
different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)
For any basis A of order h of any group G, A has only finitely many
essential subsets.

Theorem (Bienvenu-Girard-L. 2019+)
For any G,h, k,

EG(h, k) ≤ (Chk log(hk))k

for some absolute constant C.

The truth may be that EG(h, k) = O(hk). There are examples showing
that we cannot do better than this.
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Thank you!
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