Additive bases in groups

Thái Hoàng Lê

University of Mississippi

October 27, 2019

Additive bases in \mathbf{N}

- Let $(G,+)$ be an infinite commutative semigroup. If A is a subset of G, we define

$$
h A=\left\{a_{1}+\cdots+a_{h}: a_{1}, \ldots, a_{h} \in A\right\}
$$

Additive bases in \mathbf{N}

- Let $(G,+)$ be an infinite commutative semigroup. If A is a subset of G, we define

$$
h A=\left\{a_{1}+\cdots+a_{h}: a_{1}, \ldots, a_{h} \in A\right\}
$$

- For two sets X, Y, we write $X \sim Y$ if their symmetric difference $(X \backslash Y) \cup(Y \backslash X)$ is finite.
- We say A is a basis of order at most h if $h A \sim G$. In other words, all but finitely many elements of G can be written as a sum of exactly h elements of A.
- We say A is a basis of order at most h if $h A \sim G$. In other words, all but finitely many elements of G can be written as a sum of exactly h elements of A.
- If h is the smallest such number, we say A is a basis of order h and write

$$
\operatorname{ord}_{G}^{*}(A)=h .
$$

- We say A is a basis of order at most h if $h A \sim G$. In other words, all but finitely many elements of G can be written as a sum of exactly h elements of A.
- If h is the smallest such number, we say A is a basis of order h and write

$$
\operatorname{ord}_{G}^{*}(A)=h .
$$

- If A is not a basis, we define $\operatorname{ord}_{G}^{*}(A)=\infty$.

From specific bases...

Classical additive number theory deals with specific bases of \mathbf{N} (e.g. the squares, k-th powers, the primes).

From specific bases...

Classical additive number theory deals with specific bases of \mathbf{N} (e.g. the squares, k-th powers, the primes).

Examples:

- If $A=\left\{n^{2}: n \geq 0\right\}$, then $\operatorname{ord}_{\mathbf{N}}^{*}(A)=4$ (Lagrange's theorem).

From specific bases...

Classical additive number theory deals with specific bases of \mathbf{N} (e.g. the squares, k-th powers, the primes).

Examples:

- If $A=\left\{n^{2}: n \geq 0\right\}$, then $\operatorname{ord}_{\mathbf{N}}^{*}(A)=4$ (Lagrange's theorem).
- If $A=\left\{n^{k}: n \geq 0\right\}$, then $\operatorname{ord}_{\mathbf{N}}^{*}(A)=G(k) \leq(k+o(1)) \log k$ (Waring's problem).

From specific bases...

Classical additive number theory deals with specific bases of \mathbf{N} (e.g. the squares, k-th powers, the primes).

Examples:

- If $A=\left\{n^{2}: n \geq 0\right\}$, then $\operatorname{ord}_{\mathbf{N}}^{*}(A)=4$ (Lagrange's theorem).
- If $A=\left\{n^{k}: n \geq 0\right\}$, then $\operatorname{ord}_{\mathbf{N}}^{*}(A)=G(k) \leq(k+o(1)) \log k$ (Waring's problem).
- If A is the set of primes, then $\operatorname{ord}_{\mathbf{N}}^{*}(A) \leq 4$ (Goldbach's conjecture: $\left.\operatorname{ord}_{\mathbf{N}}^{*}(A)=3\right)$.

... to generic bases.

Combinatorial number theory deals with properties of a generic basis.

... to generic bases.

Combinatorial number theory deals with properties of a generic basis.

Schnirelmann's theorem (1930): If $A \subset \mathbf{N}$ has Shnirelmann density

$$
\sigma(A):=\inf _{n \in \mathbf{Z}^{+}} \frac{|A \cap[1, n]|}{n}>0
$$

and $0 \in A$, then $\operatorname{ord}_{\mathbf{N}}^{*} A<\infty$.

Removing elements from a basis

Erdős-Graham (1980) initiated the following research direction: If we remove one element from a basis, then is the new set still a basis? If yes, then what can we say about its order?

Removing elements from a basis

Erdős-Graham (1980) initiated the following research direction: If we remove one element from a basis, then is the new set still a basis? If yes, then what can we say about its order?

The following questions have been primarily studied in \mathbf{N}, but they also makes sense in any semigroups G.

Let A be a basis of order $\leq h$ of G (i.e. $h A \sim G$) and $a \in A$.
(1) (Erdős-Graham 1980) When is $A \backslash\{a\}$ still a basis (of a possibly different order)?

Let A be a basis of order $\leq h$ of G (i.e. $h A \sim G$) and $a \in A$.
(1) (Erdős-Graham 1980) When is $A \backslash\{a\}$ still a basis (of a possibly different order)?
(2) (Erdős-Graham 1980) If $A \backslash\{a\}$ is still a basis, then is its order bounded in terms of h ?

Let A be a basis of order $\leq h$ of G (i.e. $h A \sim G$) and $a \in A$.
(1) (Erdős-Graham 1980) When is $A \backslash\{a\}$ still a basis (of a possibly different order)?
(2) (Erdős-Graham 1980) If $A \backslash\{a\}$ is still a basis, then is its order bounded in terms of h ?
(3) (Grekos 1982) How many "bad" elements $a \in A$ are there?

Let A be a basis of order $\leq h$ of G (i.e. $h A \sim G$) and $a \in A$.
(1) (Erdős-Graham 1980) When is $A \backslash\{a\}$ still a basis (of a possibly different order)?
(2) (Erdős-Graham 1980) If $A \backslash\{a\}$ is still a basis, then is its order bounded in terms of h ?
(3) (Grekos 1982) How many "bad" elements $a \in A$ are there?
(4) (Grekos 1997) If $A \backslash\{a\}$ is still a basis, then what is the "typical" order of the new basis?

Let A be a basis of order $\leq h$ of G (i.e. $h A \sim G$) and $a \in A$.
(1) (Erdős-Graham 1980) When is $A \backslash\{a\}$ still a basis (of a possibly different order)?
(2) (Erdős-Graham 1980) If $A \backslash\{a\}$ is still a basis, then is its order bounded in terms of h ?
(3) (Grekos 1982) How many "bad" elements $a \in A$ are there?
(4) (Grekos 1997) If $A \backslash\{a\}$ is still a basis, then what is the "typical" order of the new basis?
(5) (Nathanson 1982) What if instead of removing an element, we remove a subset $F \subset A$ of size $k \geq 1$?

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and B. Girard, we study these questions when G is a group.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and B. Girard, we study these questions when G is a group.

Why groups?

- Groups have more structures and are easier to work with.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and B. Girard, we study these questions when G is a group.

Why groups?

- Groups have more structures and are easier to work with.
- Almost all results and arguments in \mathbf{N} can be repeated verbatim in Z.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and B. Girard, we study these questions when G is a group.

Why groups?

- Groups have more structures and are easier to work with.
- Almost all results and arguments in \mathbf{N} can be repeated verbatim in Z.
- The problem makes sense, since in any group and for any h, there exists a basis with order h.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and B. Girard, we study these questions when G is a group.

Why groups?

- Groups have more structures and are easier to work with.
- Almost all results and arguments in \mathbf{N} can be repeated verbatim in Z.
- The problem makes sense, since in any group and for any h, there exists a basis with order h.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and
B. Girard, we study these questions when G is a group.
Why groups?

- Groups have more structures and are easier to work with.
- Almost all results and arguments in \mathbf{N} can be repeated verbatim in Z.
- The problem makes sense, since in any group and for any h, there exists a basis with order h.

Existing techniques are very specific to \mathbf{N} (and \mathbf{Z}). If one wants to prove results for general groups, new ideas are required.

In joint works with V. Lambert and A. Plagne, and P.-Y. Bienvenu and
B. Girard, we study these questions when G is a group.
Why groups?

- Groups have more structures and are easier to work with.
- Almost all results and arguments in \mathbf{N} can be repeated verbatim in Z.
- The problem makes sense, since in any group and for any h, there exists a basis with order h.

Existing techniques are very specific to \mathbf{N} (and \mathbf{Z}). If one wants to prove results for general groups, new ideas are required.

From now on, G is an infinite abelian group.

The Erdős-Graham criterion

Suppose $h A \sim G$. A finite subset $F \subset A$ is said to be regular if $A \backslash F$ is still a basis, and exceptional otherwise.

The Erdős-Graham criterion

Suppose $h A \sim G$. A finite subset $F \subset A$ is said to be regular if $A \backslash F$ is still a basis, and exceptional otherwise.

In particular, an element $a \in A$ is regular if $A \backslash\{a\}$ is still a basis, and exceptional otherwise.

The Erdős-Graham criterion

Suppose $h A \sim G$. A finite subset $F \subset A$ is said to be regular if $A \backslash F$ is still a basis, and exceptional otherwise.

In particular, an element $a \in A$ is regular if $A \backslash\{a\}$ is still a basis, and exceptional otherwise.

Theorem (Erdős-Graham 1980)

Let $A \subset \mathbf{N}$ be a basis of \mathbf{N} and $a \in A$. Then a is regular (i.e., $A \backslash\{a\}$ is still a basis) if and only if

$$
\operatorname{gcd}(A \backslash\{a\}-A \backslash\{a\})=1
$$

Theorem (Erdős-Graham 1980)

Let A be a basis of \mathbf{N} and $a \in A$. Then a is regular (i.e., $A \backslash\{a\}$ is still a basis) if and only if

$$
\operatorname{gcd}(A \backslash\{a\}-A \backslash\{a\})=1 .
$$

Theorem (Erdős-Graham 1980)

Let A be a basis of \mathbf{N} and $a \in A$. Then a is regular (i.e., $A \backslash\{a\}$ is still a basis) if and only if

$$
\operatorname{gcd}(A \backslash\{a\}-A \backslash\{a\})=1 .
$$

Theorem (Erdős-Graham 1980)

Let A be a basis of \mathbf{N} and $a \in A$. Then a is regular (i.e., $A \backslash\{a\}$ is still a basis) if and only if

$$
\operatorname{gcd}(A \backslash\{a\}-A \backslash\{a\})=1 .
$$

Theorem (Bienvenu-Girard-L. 2019+)
Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G
$$

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).
- The "only if" direction is easy to see: Suppose for a contradiction that

$$
H:=\langle A \backslash F-A \backslash F\rangle \lesseqgtr G .
$$

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).
- The "only if" direction is easy to see: Suppose for a contradiction that

$$
H:=\langle A \backslash F-A \backslash F\rangle \lesseqgtr G .
$$

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).
- The "only if" direction is easy to see: Suppose for a contradiction that

$$
H:=\langle A \backslash F-A \backslash F\rangle \lesseqgtr G .
$$

Then for any $a, a^{\prime} \in A \backslash F$, a and a^{\prime} lie in the same coset of H.

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).
- The "only if" direction is easy to see: Suppose for a contradiction that

$$
H:=\langle A \backslash F-A \backslash F\rangle \lesseqgtr G .
$$

Then for any $a, a^{\prime} \in A \backslash F$, a and a^{\prime} lie in the same coset of H. Hence, for any $s, s(A \backslash F)$ lies in a coset of H, and $A \backslash F$ cannot be a basis of order s.

Theorem (Bienvenu-Girard-L. 2019+)

Let A be a basis of G and $F \subset A$ is a finite subset. Then F is regular (i.e., $A \backslash F$ is still a basis) if and only if

$$
\langle A \backslash F-A \backslash F\rangle=G .
$$

- Previous results: Nash-Nathanson 1985 ($G=\mathbf{N}, F$ arbitrary), Lambert-L.-Plagne 2017 (G arbitrary, $F=\{a\}$).
- The "only if" direction is easy to see: Suppose for a contradiction that

$$
H:=\langle A \backslash F-A \backslash F\rangle \lesseqgtr G .
$$

Then for any $a, a^{\prime} \in A \backslash F$, a and a^{\prime} lie in the same coset of H. Hence, for any $s, s(A \backslash F)$ lies in a coset of H, and $A \backslash F$ cannot be a basis of order s.

- This criterion is not true when F is infinite.

The maximum order of the new basis

Define

$$
X_{G}(h)=\max _{h A \sim \mathbf{N}} \max \left\{\operatorname{ord}^{*}(A \backslash\{a\}): A \backslash\{a\} \text { is still a basis }\right\}
$$

The maximum order of the new basis

Define

$$
X_{G}(h)=\max _{h A \sim \mathbf{N}} \max \left\{\operatorname{ord}^{*}(A \backslash\{a\}): A \backslash\{a\} \text { is still a basis }\right\}
$$

Erdős and Graham proved that

$$
(1 / 4+o(1)) h^{2} \leq X_{\mathrm{N}}(h) \leq(5 / 4+o(1)) h^{2} .
$$

The maximum order of the new basis

Define

$$
X_{G}(h)=\max _{h A \sim \mathbf{N}} \max \left\{\operatorname{ord}^{*}(A \backslash\{a\}): A \backslash\{a\} \text { is still a basis }\right\}
$$

Erdős and Graham proved that

$$
(1 / 4+o(1)) h^{2} \leq X_{\mathbf{N}}(h) \leq(5 / 4+o(1)) h^{2}
$$

The current best bounds are

$$
(1 / 3+o(1)) h^{2} \leq X_{\mathbf{N}}(h) \leq(1 / 2+o(1)) h^{2}
$$

and the exact asymptotic for $X_{\mathbf{N}}(h)$ is unknown.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G. However, it was not known if for any G and $h, X_{G}(h)<\infty$, not to mention if $X_{G}(h)$ can be bounded in terms of h alone.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G. However, it was not known if for any G and $h, X_{G}(h)<\infty$, not to mention if $X_{G}(h)$ can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis, Bienvenu-Girard-L. (2019+) prove that

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G. However, it was not known if for any G and $h, X_{G}(h)<\infty$, not to mention if $X_{G}(h)$ can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis, Bienvenu-Girard-L. (2019+) prove that

Theorem

For any group G and h, we have $X_{G}(h) \leq h^{3}-h+1$.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G. However, it was not known if for any G and $h, X_{G}(h)<\infty$, not to mention if $X_{G}(h)$ can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis, Bienvenu-Girard-L. (2019+) prove that

Theorem

For any group G and h, we have $X_{G}(h) \leq h^{3}-h+1$.

By adapting Erdős-Graham's argument, Lambert-L.-Plagne (2017) proved that

$$
x_{G}(h)=O_{G}\left(h^{2}\right)
$$

for various groups G, including $\mathbf{R}, \mathbf{Q}, \mathbf{Z}^{d}, \mathbf{Z}_{p}$.
We also proved that $X_{G}(2) \leq 5$ and $X_{G}(3) \leq 17$ for any G. However, it was not known if for any G and $h, X_{G}(h)<\infty$, not to mention if $X_{G}(h)$ can be bounded in terms of h alone.

By using the notion of invariant means from functional analysis, Bienvenu-Girard-L. (2019+) prove that

Theorem

For any group G and h, we have $X_{G}(h) \leq h^{3}-h+1$.
The truth may be that $X_{G}(h)=O\left(h^{2}\right)$.

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,
(3) $d(G)=1$.

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,
(3) $d(G)=1$.

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,
(3) $d(G)=1$.

It is well known that such measures exist (in other words, all abelian groups are amenable).

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,
(3) $d(G)=1$.

It is well known that such measures exist (in other words, all abelian groups are amenable).

An invariant mean d on G is a finitely-additive translation-invariant probability measure on G, i.e.
(1) if $A_{1}, \ldots, A_{n} \subset G$ are disjoint, then

$$
d\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} d\left(A_{i}\right)
$$

(2) for all $A \subset G$ and $x \in G$, we have $d(x+A)=d(A)$,
(3) $d(G)=1$.

It is well known that such measures exist (in other words, all abelian groups are amenable).

However, even in Z, the construction of an invariant mean is not explicit, and requires the axiom of choice (e.g. ultrafilters or the Hahn-Banach theorem).

Recall that

$$
X_{G}(h)=\max _{h A \sim G} \max \left\{\operatorname{ord}^{*}(A \backslash\{a\}): A \backslash\{a\} \text { is still a basis }\right\}
$$

Recall that

$$
X_{G}(h)=\max _{h A \sim G} \max \left\{\operatorname{ord}^{*}(A \backslash\{a\}): A \backslash\{a\} \text { is still a basis }\right\}
$$

We define
$X_{G}(h, k)=\max _{h A \sim G} \max \left\{\operatorname{ord}^{*}(A \backslash F): F \subset A,|F|=k, A \backslash F\right.$ is still a basis $\}$.

Theorem (Nash-Nathanson 1985, Nathanson 1984)

For fixed k and $h \rightarrow \infty$, we have

$$
X_{\mathbf{N}}(h, k)<_{k} h^{k+1}
$$

and also

$$
X_{\mathbf{N}}(h, k) \gg_{k} h^{k+1} .
$$

Again, the proof is very specific to \mathbf{N}. Using invariant means, we show that

Theorem (Nash-Nathanson 1985, Nathanson 1984)

For fixed k and $h \rightarrow \infty$, we have

$$
X_{\mathbf{N}}(h, k) \ll_{k} h^{k+1}
$$

and also

$$
X_{\mathbf{N}}(h, k) \gg_{k} h^{k+1} .
$$

Again, the proof is very specific to \mathbf{N}. Using invariant means, we show that

Theorem (Bienvenu-Girard-L. (2019+))

For any group G, fixed k and $h \rightarrow \infty$, we have

$$
X_{G}(h, k) \ll k h^{2 k+1}
$$

Theorem (Nash-Nathanson 1985, Nathanson 1984)

For fixed k and $h \rightarrow \infty$, we have

$$
X_{\mathbf{N}}(h, k) \ll_{k} h^{k+1}
$$

and also

$$
X_{\mathbf{N}}(h, k) \gg_{k} h^{k+1} .
$$

Again, the proof is very specific to \mathbf{N}. Using invariant means, we show that

Theorem (Bienvenu-Girard-L. (2019+))

For any group G, fixed k and $h \rightarrow \infty$, we have

$$
X_{G}(h, k) \ll k h^{2 k+1}
$$

Theorem (Nash-Nathanson 1985, Nathanson 1984)

For fixed k and $h \rightarrow \infty$, we have

$$
X_{\mathbf{N}}(h, k) \ll_{k} h^{k+1}
$$

and also

$$
X_{\mathbf{N}}(h, k) \gg_{k} h^{k+1} .
$$

Again, the proof is very specific to \mathbf{N}. Using invariant means, we show that

Theorem (Bienvenu-Girard-L. (2019+))

For any group G, fixed k and $h \rightarrow \infty$, we have

$$
X_{G}(h, k)<_{k} h^{2 k+1}
$$

The truth may be that $X_{G}(h, k)<_{k} h^{k+1}$ for all groups G.

For any group G, fixed k we have

$$
X_{G}(h, k) \ll_{k} h^{2 k+1}
$$

as $k \rightarrow \infty$.

For any group G, fixed k we have

$$
X_{G}(h, k) \ll_{k} h^{2 k+1}
$$

as $k \rightarrow \infty$.
For a particular group G, the behavior of $X_{G}(h)$ and $X_{G}(h, k)$ may be different.

For any group G, fixed k we have

$$
X_{G}(h, k) \ll_{k} h^{2 k+1}
$$

as $k \rightarrow \infty$.
For a particular group G, the behavior of $X_{G}(h)$ and $X_{G}(h, k)$ may be different.

- If G is σ-finite, i.e. $G=\cup_{i=1}^{\infty} G_{i}$, where $G_{1} \subset G_{2} \subset \ldots$ are finite groups, then

$$
X_{G}(h, k) \ll{ }_{k} h^{k+1}
$$

For any group G, fixed k we have

$$
X_{G}(h, k) \ll_{k} h^{2 k+1}
$$

as $k \rightarrow \infty$.
For a particular group G, the behavior of $X_{G}(h)$ and $X_{G}(h, k)$ may be different.

- If G is σ-finite, i.e. $G=\cup_{i=1}^{\infty} G_{i}$, where $G_{1} \subset G_{2} \subset \ldots$ are finite groups, then

$$
X_{G}(h, k) \ll k h^{k+1}
$$

- If G has exponent ℓ (i.e. $\ell x=0 \forall x \in G$), then

$$
X_{G}(h, k) \ll \ell \ell^{2 k} h .
$$

For any group G, fixed k we have

$$
X_{G}(h, k) \ll_{k} h^{2 k+1}
$$

as $k \rightarrow \infty$.
For a particular group G, the behavior of $X_{G}(h)$ and $X_{G}(h, k)$ may be different.

- If G is σ-finite, i.e. $G=\cup_{i=1}^{\infty} G_{i}$, where $G_{1} \subset G_{2} \subset \ldots$ are finite groups, then

$$
X_{G}(h, k) \ll k h^{k+1}
$$

- If G has exponent ℓ (i.e. $\ell x=0 \forall x \in G$), then

$$
X_{G}(h, k) \lll \ell \ell^{2 k} h .
$$

- When $k=1$ and ℓ is a prime power, we have

$$
X_{G}(h) \leq \ell h+O_{\ell}(1)
$$

It is interesting to study the exact asymptotic of $X_{G}(h, k)$ and $X_{G}(h)$ for a fixed group G.

It is interesting to study the exact asymptotic of $X_{G}(h, k)$ and $X_{G}(h)$ for a fixed group G.

The only groups for which we know the exact asymptotic of $X_{G}(h)$ are groups having exponent 2,

It is interesting to study the exact asymptotic of $X_{G}(h, k)$ and $X_{G}(h)$ for a fixed group G.

The only groups for which we know the exact asymptotic of $X_{G}(h)$ are groups having exponent 2, and we have

$$
X_{G}(h) \sim 2 h
$$

as $h \rightarrow \infty$.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there. Define

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A \text {. }
$$

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there. Define

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A \text {. }
$$

Theorem (Plagne 2008)

As $h \rightarrow \infty$, we have $E_{\mathbf{N}}(h) \sim 2 \sqrt{\frac{h}{\log h}}$.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there. Define

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A \text {. }
$$

Theorem (Plagne 2008)

As $h \rightarrow \infty$, we have $E_{\mathbf{N}}(h) \sim 2 \sqrt{\frac{h}{\log h}}$.

Theorem (Lambert-L.-Plagne 2017)

For any group G, we have $0 \leq E_{G}(h) \leq h-1$.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there. Define

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A \text {. }
$$

Theorem (Plagne 2008)

As $h \rightarrow \infty$, we have $E_{\mathbf{N}}(h) \sim 2 \sqrt{\frac{h}{\log h}}$.

Theorem (Lambert-L.-Plagne 2017)

For any group G, we have $0 \leq E_{G}(h) \leq h-1$.

The number of exceptional elements

Recall that $a \in A$ is called exceptional if $A \backslash\{a\}$ is not a basis. It is natural to ask how many exceptional elements are there. Define

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A \text {. }
$$

Theorem (Plagne 2008)

As $h \rightarrow \infty$, we have $E_{\mathbf{N}}(h) \sim 2 \sqrt{\frac{h}{\log h}}$.

Theorem (Lambert-L.-Plagne 2017)

For any group G, we have $0 \leq E_{G}(h) \leq h-1$. As far as general groups are concerned, these inequalities are best possible.

Essential subsets

Recall
 $E_{G}(h)=\max _{h A \sim G} \#$ exceptional elements of A, and $E_{G}(h) \leq h-1$.

Essential subsets

```
Recall
    \(E_{G}(h)=\max _{h A \sim G} \#\) exceptional elements of \(A\),
and \(E_{G}(h) \leq h-1\).
```

A subset $F \subset A$ is called exceptional if $A \backslash F$ is not a basis.

Essential subsets

Recall

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A
$$

and $E_{G}(h) \leq h-1$.
A subset $F \subset A$ is called exceptional if $A \backslash F$ is not a basis. We are tempted to define

$$
E_{G}(h, k)=\max _{h A \sim G} \# \text { exceptional subsets of size } k \text { of } A \text {. }
$$

Essential subsets

Recall

$$
E_{G}(h)=\max _{h A \sim G} \# \text { exceptional elements of } A
$$

and $E_{G}(h) \leq h-1$.
A subset $F \subset A$ is called exceptional if $A \backslash F$ is not a basis. We are tempted to define

$$
E_{G}(h, k)=\max _{h A \sim G} \# \text { exceptional subsets of size } k \text { of } A \text {. }
$$

However, if a is exceptional, then so is any set F containing a, and hence $E_{G}(h, k)=\infty$.

Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is

 exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.

In other words, F is essential if $A \backslash F$ is not a basis, but $A \backslash F^{\prime}$ is a basis for any $F^{\prime} \subsetneq F$.

Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.

In other words, F is essential if $A \backslash F$ is not a basis, but $A \backslash F^{\prime}$ is a basis for any $F^{\prime} \subsetneq F$.
$\{a\}$ is essential $\Leftrightarrow\{a\}$ is exceptional, but this is not true when $|F| \geq 2$.

Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.

In other words, F is essential if $A \backslash F$ is not a basis, but $A \backslash F^{\prime}$ is a basis for any $F^{\prime} \subsetneq F$.
$\{a\}$ is essential $\Leftrightarrow\{a\}$ is exceptional, but this is not true when $|F| \geq 2$.

Theorem (Deschamps-Farhi 2007)
For any basis A of order h of \mathbf{N}, A has only finitely many essential subsets.

Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.

In other words, F is essential if $A \backslash F$ is not a basis, but $A \backslash F^{\prime}$ is a basis for any $F^{\prime} \subsetneq F$.
$\{a\}$ is essential $\Leftrightarrow\{a\}$ is exceptional, but this is not true when $|F| \geq 2$.

Theorem (Deschamps-Farhi 2007)
For any basis A of order h of \mathbf{N}, A has only finitely many essential subsets.

Deschamps-Farhi (2007): A subset $F \subset A$ is called essential if it is exceptional and minimal w / r to inclusion (i.e. F^{\prime} is not exceptional for any $\left.F^{\prime} \subsetneq F\right)$.

In other words, F is essential if $A \backslash F$ is not a basis, but $A \backslash F^{\prime}$ is a basis for any $F^{\prime} \subsetneq F$.
$\{a\}$ is essential $\Leftrightarrow\{a\}$ is exceptional, but this is not true when $|F| \geq 2$.

Theorem (Deschamps-Farhi 2007)
For any basis A of order h of \mathbf{N}, A has only finitely many essential subsets. However, this number cannot be bounded in terms of h alone.

Define

$E_{G}(h, k)=\max _{h A \sim G} \#$ essential subsets of size k of A.

Define

$$
E_{G}(h, k)=\max _{h A \sim G} \# \text { essential subsets of size } k \text { of } A \text {. }
$$

Theorem (Hegarty 2010)

For fixed h and $k \rightarrow \infty$, we have

$$
E_{\mathbf{N}}(h, k) \sim(h-1) \frac{\log k}{\log \log k} .
$$

For fixed k and $h \rightarrow \infty$, we have

$$
E_{\mathbf{N}}(h, k) \asymp_{k}\left(\frac{h^{k}}{\log h}\right)^{\frac{1}{k+1}} .
$$

Deschamps-Farhi's proof works only in N (and Z). Using a completely different argument, we show that

Deschamps-Farhi's proof works only in \mathbf{N} (and Z). Using a completely different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)

For any basis A of order h of any group G, A has only finitely many essential subsets.

Deschamps-Farhi's proof works only in \mathbf{N} (and Z). Using a completely different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)

For any basis A of order h of any group G, A has only finitely many essential subsets.

Deschamps-Farhi's proof works only in \mathbf{N} (and Z). Using a completely different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)

For any basis A of order h of any group G, A has only finitely many essential subsets.

Theorem (Bienvenu-Girard-L. 2019+)

For any G, h, k,

$$
E_{G}(h, k) \leq(\operatorname{Chk} \log (h k))^{k}
$$

for some absolute constant C.

Deschamps-Farhi's proof works only in \mathbf{N} (and Z). Using a completely different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)

For any basis A of order h of any group G, A has only finitely many essential subsets.

Theorem (Bienvenu-Girard-L. 2019+)

For any G, h, k,

$$
E_{G}(h, k) \leq(\operatorname{Chk} \log (h k))^{k}
$$

for some absolute constant C.

Deschamps-Farhi's proof works only in \mathbf{N} (and Z). Using a completely different argument, we show that

Theorem (Bienvenu-Girard-L. 2019+)

For any basis A of order h of any group G, A has only finitely many essential subsets.

Theorem (Bienvenu-Girard-L. 2019+)

For any G, h, k,

$$
E_{G}(h, k) \leq(\operatorname{Chk} \log (h k))^{k}
$$

for some absolute constant C.

The truth may be that $E_{G}(h, k)=O(h k)$. There are examples showing that we cannot do better than this.

Thank you!

