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The Gaussian binomial coefficients (or q-binomial
coefficients)(

n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)

= the number of k-dimensional subspaces of Fn
q.

There are a lot of works associated with Fn
q.

We add one more algebraic structure, called quadratic form.

We will count special quadratic subspaces of (Fn
q,Q), where

Q = x21 + · · ·+ x2n .

This count gives us a new binomial coefficients, called the
dot-binomial coefficients.
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q-analogues dot-analogues

space Fn
q (Fn

q, dotn)

subspace a k-dimensional subspace of Fn
q a dotk -subspace of dotn

bracket the number of lines in Fn
q the number of spacelike lines in (Fn

q, dotn)

factorial [n]q! [n]d !

poset Ln(q) En(q)

group |GL(n, q)| = qn(n−1)/2(q − 1)n [n]q! |O(n, q)| = 2n [n]d !

flag flags in Fn
q Euclidean flags in (Fn

q,dotn)

binomial
coefficient

(n
k

)
q

=
[n]q!

[k]q![(n−k)]q! =

∣∣∣∣GL(n,q)(
A C
0 B

) ∣∣∣∣ (n
k

)
d

= [n]d !
[k]d ![(n−k)]d ! =

∣∣∣ O(n,q)
O(k,q)×O(n−k,q)

∣∣∣
Table: The q-analogues and the dot-analogues.

Combinatorics of quadratic spaces over finite fields.
Arxiv: 1910.03482
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The theory of quadratic forms

Preliminaries

Let V be a n-dimensional vector space over a field F with
charF 6= 2.

A quadratic form (symmetric bilinear form) is a kind of
generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2.

Definition (Coordinate independent)

A quadratic form Q on V is a function from V to F satisfying
the following two conditions:
(1) Q(cv) = c2Q(v) for any v ∈ V , c ∈ F ;
(2) B(v ,w) := 1

2(Q(v + w)− Q(v)− Q(w)) is bilinear.
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Example

In Rn, consider Q(x1, x2, · · · , xn) = x21 + x22 + · · ·+ x2n .
For v = (v1, · · · , vn),w = (w1, · · · ,wn) in Rn,

B(v ,w) := 〈v ,w〉 = v1w1 + · · ·+ vnwn

The matrix form associated with Q in the standard basis is
1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

 .

In a chosen basis, there are canonical bijections:

quadratic
form on V

⇔ symmetric bilinear
form on V

⇔ symmetric
n × n matrix
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Definition

The quadratic forms Q1, Q2 on V are equivalent if ∃ a linear
isomorphism A : V −→ V s.t Q2(Av) = Q1(v) for any v ∈ V .

e.g, Q(x , y) = x2 − y2 and Q ′(x , y) = xy are equivalent on R2.

Definition

Q is called nondegenerate if a matrix representation M of Q is
invertible. If detM = 0, we call a quadratic form degenerate.

e.g., On R2, Q(x , y) = x2 − y2 is nondegenerate.

On R3, Q(x , y , z) = x2 − y2 is degenerate.
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Theorem

Any nondegenerate quadratic form on Fn
q is equivalent to one of

x21 + · · ·+ x2n−1 + x2n or x21 + · · ·+ x2n−1 + λx2n

for some nonsqaure λ ∈ Fq. Denote dotn, λdotn respectively.

In particular, there are three possible 1-dimensional quadratic
subspaces in (Fn

q, dotn) up to equivalence:

(1) dot1, (2) λdot1, and the degenerate case (3) 0.
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Definition

The type of a line l through the origin in (Fn
q, dotn) is

spacelike if |l | is a square,

timelike if |l | is a nonsquare, and

lightlike if |l | is 0.

Here, |l | := dotn(x) for any nonzero x in l .
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(V ,Q) is called a quadratic space;

(V1,Q1) and (V2,Q2) are isometrically isomorphic if ∃ a
linear map A : V1 → V2 s.t Q2(Av) = Q1(v).

For W ⊂ V , (W ,Q|W ) is a quadratic subspace.

Theorem (Witt’s Cancellation Theorem)

Let U1,U2,V1,V2 be quadratic spaces where V1 and V2 are
isometrically isomorphic. If U1 ⊕ V1

∼= U2 ⊕ V2, then U1
∼= U2.

Theorem (Witt’s Extension Theorem)

Let X1
∼= X2, X1 = U1 ⊕ V1,X2 = U2 ⊕ V2, f : V1 −→ V2 an

isometry. Then there is an isomtery F : X1 −→ X2 such that
F |V1 = f and F (U1) = U2.
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Our interest: (Fn
q, dot(x)) where dot(x) = x21 + · · ·+ x2n .

We call it a (nondegenerate) quadratic space of Euclidean type.

Q. What about quadratic subspaces of (Fn
q, dot(x))?

Possible k-dimensional quadratic subspaces:

dotk , dotk−1 ⊕ 0, · · · , dot1 ⊕ 0k−1

λdotk , λdotk−1 ⊕ 0, · · · , λdot1 ⊕ 0k−1

0k

Let W be a dotk-subspace if W is isometrically isomorphic to
dotk with dotn|W .

⇒ We are only looking at dotk -subspaces of (Fn
q, dot(x)).
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Define a poset En(q) := (dotk,n,⊂).

Call it the Euclidean poset.

We do not consider the empty set to be a subspace.

We consider the zero space as the least element of the
Euclidean poset.
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Example.Example.Example. In E3(q) = (F3
3, dot3(x)),

F3
3

P1 P2 P3

l1 l2 l3

0

P1 = 〈(1, 0, 0), (0, 1, 0)〉 , P2 = 〈(1, 0, 0), (0, 0, 1)〉 ,
P3 = 〈(0, 1, 0), (0, 0, 1)〉 ,
l1 = 〈(1, 0, 0)〉 , l2 = 〈(0, 1, 0)〉 , l3 = 〈(0, 0, 1).〉

Notice that any vertex in En(q) has the same degree by Witt’s
Theorems.
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Lemma

For each k and n, the number of dotk subspaces in dotn containing
a spacelike line is |dotk−1,n−1|.

Proof.

This counting is independent of which spacelike line is chosen by
Witt’s Extension Theorem. Let L be a spacelike line. Then we get
the following bijection map.

(dotk−1 subspaces in (dotn/L)) −→ (dotk containing L)

WL 7→ L⊕W

It is easy to show that this map is bijective by its definition.
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Euclidean flag is a (maximal) chain in a poset En(q). We count
flags in two different ways.

Theorem

For each n, we have

|dot1,k ||dotk,n| = |dot1,n||dotk−1,n−1|.

Proof.

Note that

|dot1,k | = spacelike lines in a fixed dotn subspace

|dotk,n| = the number of dotk subspaces in a fixed dotn

|dot1,n| = the number of spacelike lines in fixed a dotn

|dotk−1,n−1| = the number of dotk subspaces containing a spacelike line.
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|dot2,n|= |dot1,n||dot1,n−1|
|dot1,2| .

|dot3,n|= |dot1,n||dot2,n−1|
|dot1,3| =

|dot1,n|
|dot1,3|

|dot1,n−1||dot1,n−2|
|dot1,2| =

|dot1,n||dot1,n−1||dot1,n−2|
|dot1,3||dot1,2| .

Therefore, we have

|dotk,n| =
|dot1,n||dot1,n−1| · · · |dot1,n−k+1|

|dot1,k | · · · |dot1,1|
. (1)

Definition

For any n and k , we define

[k]d := |dot1,k |;
[n]d ! := [n]d · · · [1]d ;(n
k

)
d

:= |dotk,n| = [n!]d
[k!]d [(n−k)!]d .

We call these dot-analogs. In particular, we call
(n
k

)
d

dot-binomial coefficients. We adopt the convention that
|dot1,0| := 1.
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The Euclidean posets

The number of maximal Euclidean flags in En(q) is
[n]d ! = [n]d [n − 1]d · · · [1]d

Note that Euclidean flags are bijective up to a factor of 2n

with ON basis.

(∵ span(e1) ⊂ span(e1, e2) ⊂ · · · ⊂ span(e1, e2, · · · , en).)

[n]d ! = the number of the Euclidean flags

= the number of orthonormal bases up to ±

=
|O(n, q)|

2n

⇒ |O(n, q)| = 2n [n]d !.
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The Euclidean posets

(
n

k

)
d

=
[n]d !

[k]d ! [n − k]d !

=
|O(n, q)|

|O(k, q)× O(n − k , q)|
· 2k · 2n−k

2n

=

∣∣∣∣ O(n, q)

O(k , q)× O(n − k , q)

∣∣∣∣ .
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The Euclidean posets

Question. How to count |dot1,k |?

Theorem

In (Fn
q, x

2
1 + x22 + · · ·+ x2n ), the number of spacelike lines, |dot1,n|,

is following:

Spacelike q ≡ 1 mod 4 q ≡ 3 mod 4

n = 4k + 3 qn−1+q
n−1
2

2
qn−1−q

n−1
2

2

n = 4k + 1 qn−1+q
n−1
2

2

n = 4k + 2 qn−1−q
n−2
2

2
qn−1+q

n−2
2

2

n = 4k qn−1−q
n−2
2

2

Table: The number of spacelike lines in dotn.
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More results

A new isometric invariant of combinatorial type on quadratic
spaces over finite fields. It can distinguish even degenerate
cases.

Recover the size of Minkowski’s sphere.

Existence of types of quadratic subspaces in Fn
q.

En(q) is rank symmetric, rank unimodal, log-concave, and
Sperner.

Compute the Mobius function for En(q).

We study its combinatorial properties such as Pascal’s
triangle, the dot-binomial coefficients are rational in q,
compute limq→1

(n
k

)
d

.
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Question. Can we find other combinatorial descriptions of
dot-binomial coefficients?
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