The dot-binomial coefficients

Semin Yoo

University of Rochester

7th annual Mississippi Discrete Math Workshop October 27th, 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

L Motivation

1. Motivation

Motivation

The Gaussian binomial coefficients (or q-binomial coefficients)

$$\binom{n}{k}_{q} = \frac{(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{k-1})}{(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})}$$

= the number of k-dimensional subspaces of \mathbb{F}_q^n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Short title - Motivation

Motivation

The Gaussian binomial coefficients (or q-binomial coefficients)

$$\binom{n}{k}_{q} = \frac{(q^{n}-1)(q^{n}-q)\cdots(q^{n}-q^{k-1})}{(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})}$$

= the number of k-dimensional subspaces of \mathbb{F}_q^n .

- There are a lot of works associated with \mathbb{F}_q^n .
- We add one more algebraic structure, called quadratic form.
- We will count special quadratic subspaces of (\mathbb{F}_q^n, Q) , where $Q = x_1^2 + \cdots + x_n^2$.
- This count gives us a new binomial coefficients, called the dot-binomial coefficients.

	q-analogues	dot-analogues
space	\mathbb{F}_q^n	$(\mathbb{F}_q^n, \operatorname{dot}_n)$
subspace	a k-dimensional subspace of \mathbb{F}_q^n	a dot _k -subspace of dot _n
bracket	the number of lines in \mathbb{F}_q^n	the number of spacelike lines in (\mathbb{F}_q^n, dot_n)
factorial	[<i>n</i>] _{<i>q</i>} !	[<i>n</i>] _{<i>d</i>} !
poset	$L_n(q)$	$E_n(q)$
group	$ GL(n,q) = q^{n(n-1)/2}(q-1)^n [n]_q!$	$ O(n,q) = 2^n [n]_d!$
flag	flags in \mathbb{F}_q^n	Euclidean flags in (\mathbb{F}_q^n, dot_n)
binomial coefficient	$\binom{n}{k}_{q} = \frac{[n]_{q}!}{[k]_{q}![(n-k)]_{q}!} = \begin{vmatrix} \frac{GL(n,q)}{\begin{pmatrix} A & C \\ 0 & B \end{vmatrix}} \end{vmatrix}$	$\binom{n}{k}_{d} = \frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!} = \left \frac{O(n,q)}{O(k,q) \times O(n-k,q)}\right $

Table: The *q*-analogues and the dot-analogues.

Combinatorics of quadratic spaces over finite fields. Arxiv: 1910.03482

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

1 Motivation

2 Preliminaries

The theory of quadratic forms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

3 Main Results

- The Euclidean posets
- More results

4 References

- Preliminaries

└─ The theory of quadratic forms

Outline

2 PreliminariesThe theory of quadratic forms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

3 Main Results
The Euclidean posets
More results

4 References

- Preliminaries

└─ The theory of quadratic forms

Preliminaries

- Let V be a *n*-dimensional vector space over a field F with char $F \neq 2$.
- A quadratic form (symmetric bilinear form) is a kind of generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preliminaries

└─ The theory of quadratic forms

Preliminaries

- Let V be a *n*-dimensional vector space over a field F with char $F \neq 2$.
- A quadratic form (symmetric bilinear form) is a kind of generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2.

Definition (Coordinate independent)

A quadratic form Q on V is a function from V to F satisfying the following two conditions: (1) $Q(cv) = c^2 Q(v)$ for any $v \in V, c \in F$; (2) $B(v, w) := \frac{1}{2}(Q(v + w) - Q(v) - Q(w))$ is bilinear.

୶ୡୡ

Preliminaries

└─ The theory of quadratic forms

Example

In
$$\mathbb{R}^{n}$$
, consider $Q(x_{1}, x_{2}, \dots, x_{n}) = x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}$
For $v = (v_{1}, \dots, v_{n}), w = (w_{1}, \dots, w_{n})$ in \mathbb{R}^{n} ,

$$\bullet B(v,w) := \langle v,w \rangle = v_1 w_1 + \cdots + v_n w_n$$

• The matrix form associated with Q in the standard basis is

$$egin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \ddots & \vdots \ \vdots & \ddots & \ddots & 0 \ 0 & \cdots & 0 & 1 \end{pmatrix}$$

•

- Preliminaries

└─ The theory of quadratic forms

Example

In
$$\mathbb{R}^{n}$$
, consider $Q(x_{1}, x_{2}, \dots, x_{n}) = x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2}$
For $v = (v_{1}, \dots, v_{n}), w = (w_{1}, \dots, w_{n})$ in \mathbb{R}^{n} ,

$$\bullet B(v,w) := \langle v,w \rangle = v_1 w_1 + \cdots + v_n w_n$$

• The matrix form associated with Q in the standard basis is

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

.

In a chosen basis, there are canonical bijections:

quadratic symmetric bilinear form on
$$V$$
 \Leftrightarrow form on V \Leftrightarrow $n \times n$ matrix

Definition

The quadratic forms Q_1 , Q_2 on V are **equivalent** if \exists a linear isomorphism $A: V \longrightarrow V$ s.t $Q_2(Av) = Q_1(v)$ for any $v \in V$.

e.g, $Q(x,y) = x^2 - y^2$ and Q'(x,y) = xy are equivalent on \mathbb{R}^2 .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

The quadratic forms Q_1 , Q_2 on V are **equivalent** if \exists a linear isomorphism $A: V \longrightarrow V$ s.t $Q_2(Av) = Q_1(v)$ for any $v \in V$.

e.g,
$$Q(x,y) = x^2 - y^2$$
 and $Q'(x,y) = xy$ are equivalent on \mathbb{R}^2 .

Definition

Q is called **nondegenerate** if a matrix representation M of Q is invertible. If detM = 0, we call a quadratic form **degenerate**.

e.g., On \mathbb{R}^2 , $Q(x, y) = x^2 - y^2$ is nondegenerate. On \mathbb{R}^3 , $Q(x, y, z) = x^2 - y^2$ is degenerate.

Theorem

Any nondegenerate quadratic form on \mathbb{F}_a^n is equivalent to one of

$$x_1^2 + \dots + x_{n-1}^2 + x_n^2$$
 or $x_1^2 + \dots + x_{n-1}^2 + \lambda x_n^2$

for some nonsquire $\lambda \in \mathbb{F}_q$. Denote dot_n, λ dot_n respectively.

Theorem

Any nondegenerate quadratic form on \mathbb{F}_a^n is equivalent to one of

$$x_1^2 + \dots + x_{n-1}^2 + x_n^2$$
 or $x_1^2 + \dots + x_{n-1}^2 + \lambda x_n^2$

for some nonsquure $\lambda \in \mathbb{F}_q$. Denote dot_n, λ dot_n respectively.

In particular, there are three possible 1-dimensional quadratic subspaces in (\mathbb{F}_a^n, dot_n) up to equivalence:

(1) dot₁, (2) λ dot₁, and the degenerate case (3) 0.

└─ The theory of quadratic forms

Definition

The type of a line *I* through the origin in (\mathbb{F}_q^n, dot_n) is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **spacelike** if |*I*| is a square,
- **timelike** if |*I*| is a nonsquare, and
- lightlike if |/| is 0.

Here, $|I| := dot_n(\mathbf{x})$ for any nonzero \mathbf{x} in I.

- (V, Q) is called a quadratic space;
- (V_1, Q_1) and (V_2, Q_2) are isometrically isomorphic if \exists a linear map $A : V_1 \to V_2$ s.t $Q_2(Av) = Q_1(v)$.

• For $W \subset V$, $(W, Q|_W)$ is a quadratic subspace.

- (V, Q) is called a quadratic space;
- (V_1, Q_1) and (V_2, Q_2) are isometrically isomorphic if \exists a linear map $A : V_1 \to V_2$ s.t $Q_2(Av) = Q_1(v)$.
- For $W \subset V$, $(W, Q|_W)$ is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let U_1, U_2, V_1, V_2 be quadratic spaces where V_1 and V_2 are isometrically isomorphic. If $U_1 \oplus V_1 \cong U_2 \oplus V_2$, then $U_1 \cong U_2$.

- (V, Q) is called a quadratic space;
- (V_1, Q_1) and (V_2, Q_2) are isometrically isomorphic if \exists a linear map $A : V_1 \to V_2$ s.t $Q_2(Av) = Q_1(v)$.
- For $W \subset V$, $(W, Q|_W)$ is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let U_1, U_2, V_1, V_2 be quadratic spaces where V_1 and V_2 are isometrically isomorphic. If $U_1 \oplus V_1 \cong U_2 \oplus V_2$, then $U_1 \cong U_2$.

Theorem (Witt's Extension Theorem)

Let $X_1 \cong X_2$, $X_1 = U_1 \oplus V_1$, $X_2 = U_2 \oplus V_2$, $f : V_1 \longrightarrow V_2$ an isometry. Then there is an isometry $F : X_1 \longrightarrow X_2$ such that $F|_{V_1} = f$ and $F(U_1) = U_2$.

Our interest: $(\mathbb{F}_q^n, dot(\mathbf{x}))$ where $dot(\mathbf{x}) = x_1^2 + \cdots + x_n^2$.

We call it a (nondegenerate) quadratic space of Euclidean type.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Our interest: $(\mathbb{F}_q^n, dot(\mathbf{x}))$ where $dot(\mathbf{x}) = x_1^2 + \cdots + x_n^2$. We call it a (nondegenerate) quadratic space of **Euclidean type**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Q. What about quadratic subspaces of $(\mathbb{F}_{a}^{n}, dot(\mathbf{x}))$?

Our interest: $(\mathbb{F}_q^n, dot(\mathbf{x}))$ where $dot(\mathbf{x}) = x_1^2 + \cdots + x_n^2$. We call it a (nondegenerate) quadratic space of **Euclidean type**.

Q. What about quadratic subspaces of $(\mathbb{F}_{a}^{n}, dot(\mathbf{x}))$?

Possible k-dimensional quadratic subspaces:

$$dot_k, dot_{k-1} \oplus 0, \cdots, dot_1 \oplus 0^{k-1}$$
$$\lambda dot_k, \lambda dot_{k-1} \oplus 0, \cdots, \lambda dot_1 \oplus 0^{k-1}$$
$$0^k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our interest: $(\mathbb{F}_q^n, dot(\mathbf{x}))$ where $dot(\mathbf{x}) = x_1^2 + \cdots + x_n^2$. We call it a (nondegenerate) quadratic space of **Euclidean type**.

Q. What about quadratic subspaces of $(\mathbb{F}_{a}^{n}, dot(\mathbf{x}))$?

Possible k-dimensional quadratic subspaces:

$$dot_k, dot_{k-1} \oplus 0, \cdots, dot_1 \oplus 0^{k-1}$$
$$\lambda dot_k, \lambda dot_{k-1} \oplus 0, \cdots, \lambda dot_1 \oplus 0^{k-1}$$
$$0^k$$

Let W be a **dot**_k-subspace if W is isometrically isomorphic to dot_k with dot_n|_W.

 \Rightarrow We are only looking at dot_k-subspaces of (\mathbb{F}_{q}^{n} , dot(**x**)).

└- Main Results

L The Euclidean posets

Outline

2 PreliminariesThe theory of quadratic forms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

3 Main Results
The Euclidean posets
More results

4 References

└─ The Euclidean posets

• Define a poset $E_n(q) := (\operatorname{dot}_{k,n}, \subset)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Call it the **Euclidean poset**.

- Define a poset $E_n(q) := (\operatorname{dot}_{k,n}, \subset)$.
- Call it the **Euclidean poset**.
- We do not consider the empty set to be a subspace.
- We consider the zero space as the least element of the Euclidean poset.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

└─ Main Results

L The Euclidean posets

Example. In
$$E_3(q) = (\mathbb{F}_3^3, \operatorname{dot}_3(\mathbf{x}))$$
,

$$\begin{split} P_1 &= \langle (1,0,0), (0,1,0) \rangle , \ P_2 &= \langle (1,0,0), (0,0,1) \rangle , \\ P_3 &= \langle (0,1,0), (0,0,1) \rangle , \\ l_1 &= \langle (1,0,0) \rangle , \ l_2 &= \langle (0,1,0) \rangle , \ l_3 &= \langle (0,0,1) . \rangle \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

└─ Main Results

└─ The Euclidean posets

Example. In
$$E_3(q) = (\mathbb{F}_3^3, \operatorname{dot}_3(\mathbf{x}))$$
,

$$\begin{split} P_1 &= \langle (1,0,0), (0,1,0) \rangle , \ P_2 &= \langle (1,0,0), (0,0,1) \rangle , \\ P_3 &= \langle (0,1,0), (0,0,1) \rangle , \\ l_1 &= \langle (1,0,0) \rangle , \ l_2 &= \langle (0,1,0) \rangle , \ l_3 &= \langle (0,0,1). \rangle \end{split}$$

Notice that any vertex in $E_n(q)$ has the same degree by Witt's Theorems.

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Lemma

For each k and n, the number of dot_k subspaces in dot_n containing a spacelike line is $|dot_{k-1,n-1}|$.

Proof.

This counting is independent of which spacelike line is chosen by Witt's Extension Theorem. Let L be a spacelike line. Then we get the following bijection map.

 $\begin{array}{ccc} (\operatorname{dot}_{k-1} \operatorname{subspaces} \operatorname{in} \, (\operatorname{dot}_n/L)) & \longrightarrow & (\operatorname{dot}_k \operatorname{ containing } L) \\ & WL & \mapsto & L \oplus W \end{array}$

It is easy to show that this map is bijective by its definition.

- Main Results

└─ The Euclidean posets

Euclidean flag is a (maximal) chain in a poset $E_n(q)$. We count flags in two different ways.

Theorem

For each n, we have

$$|dot_{1,k}||dot_{k,n}| = |dot_{1,n}||dot_{k-1,n-1}|.$$

Proof.

Note that

 $|dot_{1,k}| = spacelike lines in a fixed dot_n subspace$ $<math>|dot_{k,n}| = the number of dot_k subspaces in a fixed dot_n$ $|dot_{1,n}| = the number of spacelike lines in fixed a dot_n$ $|dot_{k-1,n-1}| = the number of dot_k subspaces containing a spacelike line.$

└─ Main Results

Т

└─ The Euclidean posets

$$\begin{aligned} & |\operatorname{dot}_{2,n}| = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{1,n-1}|}{|\operatorname{dot}_{1,2}|}. \\ & |\operatorname{dot}_{3,n}| = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{2,n-1}|}{|\operatorname{dot}_{1,3}|} = \frac{|\operatorname{dot}_{1,n}|}{|\operatorname{dot}_{1,3}|} \frac{|\operatorname{dot}_{1,n-1}||\operatorname{dot}_{1,n-2}|}{|\operatorname{dot}_{1,2}|} = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{1,n-1}||\operatorname{dot}_{1,n-1}||\operatorname{dot}_{1,n-1}|}{|\operatorname{dot}_{1,3}||\operatorname{dot}_{1,2}|} \\ & \text{herefore, we have} \end{aligned}$$

$$|\mathsf{dot}_{k,n}| = \frac{|\mathsf{dot}_{1,n}||\mathsf{dot}_{1,n-1}|\cdots|\mathsf{dot}_{1,n-k+1}|}{|\mathsf{dot}_{1,k}|\cdots|\mathsf{dot}_{1,1}|}.$$
 (1)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

└─ Main Results

-The Euclidean posets

$$|\operatorname{dot}_{2,n}| = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{1,n-1}|}{|\operatorname{dot}_{1,2}|}.$$

$$|\operatorname{dot}_{3,n}| = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{2,n-1}|}{|\operatorname{dot}_{1,3}|} = \frac{|\operatorname{dot}_{1,n}|}{|\operatorname{dot}_{1,3}|} \frac{|\operatorname{dot}_{1,n-1}||\operatorname{dot}_{1,n-2}|}{|\operatorname{dot}_{1,2}|} = \frac{|\operatorname{dot}_{1,n}||\operatorname{dot}_{1,n-1}||\operatorname{dot}_{1,n-1}|}{|\operatorname{dot}_{1,3}||\operatorname{dot}_{1,2}|}$$
Therefore, we have

$$|dot_{k,n}| = rac{|dot_{1,n}||dot_{1,n-1}|\cdots|dot_{1,n-k+1}|}{|dot_{1,k}|\cdots|dot_{1,1}|}.$$
 (1)

Definition

For any n and k, we define

We call these **dot-analogs**. In particular, we call $\binom{n}{k}_d$ **dot-binomial coefficients**. We adopt the convention that $|dot_{1,0}| := 1$.

) 9 (0

Short titi	е

■ The number of maximal Euclidean flags in E_n(q) is [n]_d! = [n]_d [n − 1]_d ··· [1]_d

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Short title	
└─ Main Results	
The Euclidean	г

osets

- The number of maximal Euclidean flags in $E_n(q)$ is $[n]_d! = [n]_d [n-1]_d \cdots [1]_d$
- Note that Euclidean flags are bijective up to a factor of 2ⁿ with ON basis.

$$(\because \mathsf{span}(e_1) \subset \mathsf{span}(e_1, e_2) \subset \cdots \subset \mathsf{span}(e_1, e_2, \cdots, e_n).)$$

Short title		
└─ Main Results		

osets

- The number of maximal Euclidean flags in $E_n(q)$ is $[n]_d! = [n]_d [n-1]_d \cdots [1]_d$
- Note that Euclidean flags are bijective up to a factor of 2ⁿ with ON basis.

$$(\because \text{span}(e_1) \subset \text{span}(e_1, e_2) \subset \cdots \subset \text{span}(e_1, e_2, \cdots, e_n).)$$

$$[n]_{d}! = \text{the number of the Euclidean flags}$$

= the number of orthonormal bases up to ±
$$= \frac{|O(n,q)|}{2^{n}}$$

・ロト ・ 理 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 $\Rightarrow |O(n,q)| = 2^n [n]_d!.$

└─ Main Results

└─ The Euclidean posets

 $\binom{n}{k}_{d} = \frac{[n]_{d}!}{[k]_{d}! [n-k]_{d}!}$ $= \frac{|O(n,q)|}{|O(k,q) \times O(n-k,q)|} \cdot \frac{2^{k} \cdot 2^{n-k}}{2^{n}}$ $= \left| \frac{O(n,q)}{O(k,q) \times O(n-k,q)} \right|.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

└─ Main Results

└─ The Euclidean posets

	q-analogues	dot-analogues
space	\mathbb{F}_q^n	(\mathbb{F}_q^n, dot_n)
subspace	a k-dimensional subspace of \mathbb{F}_q^n	a dot _k -subspace of dot _n
bracket	the number of lines in \mathbb{F}_q^n	the number of spacelike lines in (\mathbb{F}_q^n, dot_n)
factorial	[<i>n</i>] _{<i>q</i>} !	[<i>n</i>] _{<i>d</i>} !
poset	$L_n(q)$	$E_n(q)$
group	$ GL(n,q) = q^{n(n-1)/2}(q-1)^n [n]_q!$	$ O(n,q) =2^n[n]_d!$
flag	flags in \mathbb{F}_q^n	Euclidean flags in (\mathbb{F}_q^n, dot_n)
binomial coefficient	$\binom{n}{k}_{q} = \frac{[n]_{q}!}{[k]_{q}![(n-k)]_{q}!} = \left \frac{GL(n,q)}{\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}} \right $	$\binom{n}{k}_{d} = \frac{[n]_{d}!}{[k]_{d}![(n-k)]_{d}!} = \left \frac{O(n,q)}{O(k,q) \times O(n-k,q)}\right $

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Table: The *q*-analogues and the dot-analogues.

└─ Main Results

└─ The Euclidean posets

Question. How to count $|dot_{1,k}|$?

Theorem

In $(\mathbb{F}_q^n, x_1^2 + x_2^2 + \cdots + x_n^2)$, the number of spacelike lines, $|dot_{1,n}|$, is following:

Spacelike	$q\equiv 1 m{mod} 4$	$\mathbf{q}\equiv3\ \mathbf{mod}\ 4$
n=4k+3	$\frac{q^{n-1}+q^{\frac{n-1}{2}}}{2}$	$\frac{q^{n-1}-q^{\frac{n-1}{2}}}{2}$
n = 4k + 1		$\frac{q^{n-1}+q^{\frac{n-1}{2}}}{2}$
n = 4k + 2	$\frac{q^{n-1}-q^{\frac{n-2}{2}}}{2}$	$\frac{q^{n-1}+q^{\frac{n-2}{2}}}{2}$
n = 4k		$\frac{q^{n-1}-q^{\frac{n-2}{2}}}{2}$

Table: The number of spacelike lines in dot_n .

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

└- Main Results

└─ More results

2 PreliminariesThe theory of quadratic forms

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

3 Main Results
The Euclidean posets
More results

4 References

└─ Main Results

More results

More results

- A new isometric invariant of combinatorial type on quadratic spaces over finite fields. It can distinguish even degenerate cases.
- Recover the size of Minkowski's sphere.
- Existence of types of quadratic subspaces in \mathbb{F}_q^n .
- *E_n(q)* is rank symmetric, rank unimodal, log-concave, and Sperner.
- Compute the Mobius function for $E_n(q)$.
- We study its combinatorial properties such as Pascal's triangle, the dot-binomial coefficients are rational in q, compute lim_{q→1} (ⁿ_k)_d.

Short	tit	le	
∟ма	ain	Result	s

More results

Question. Can we find other combinatorial descriptions of dot-binomial coefficients?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

Pete L. Clark

Quadratic forms chapter I: Witt's theory

http://math.uga.edu/~pete/quadraticforms.pdf

Keith Conrad

Bilinear Forms

https:

//kconrad.math.uconn.edu/blurbs/linmultialg/bilinearform.pdf

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Semin Yoo (2019)

Combinatorial structures of quadratic spaces over finite fields

Preprint

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで