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The Gaussian binomial coefficients (or g-binomial
coefficients)

<n> (@ =1)(q"—q)---(¢"— ¢ )
(gk = 1)(gk — q)---(gk — g*°1)

k) g
= the number of k-dimensional subspaces of Fyg.
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Motivation

The Gaussian binomial coefficients (or g-binomial
coefficients)

<n> (¢"—1)(g"—q)---(q" — g*° 1)

k)g (g =1)(gk—q)--- (¢~ — gk1)

= the number of k-dimensional subspaces of Fyg.

m There are a lot of works associated with [Fg.

m We add one more algebraic structure, called quadratic form.

m We will count special quadratic subspaces of (Fg, @), where
Q=x2+ - +x2.

m This count gives us a new binomial coefficients, called the
dot-binomial coefficients.



Short title
L Motivation

H g-analogues

dot-analogues

space Fy (IFg, dotn)
subspace a k-dimensional subspace of Fg a doty-subspace of dot,
bracket the number of lines in Fg the number of spacelike lines in (Fy, dot,)
factorial [n]! [n],!
poset La(q) En(q)
group || [GL(n,q)| = """ D/?(q — 1)"[n],! [O(n, q)| = 2" [n] 4!
. flag. flags in Fy Euclidean flags in (F7,dot,)
binomial (7). = dle o = | SLina) (7), = et = 0(n,q)
coefficient Ka = [Kallln=Rla! | (4 C) k)d = Kal(n—K)a! — | O(k.q)x O(n—k,q)

Table: The g-analogues and the dot-analogues.

Combinatorics of quadratic spaces over finite fields.
Arxiv: 1910.03482
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Preliminaries

m Let V be a n-dimensional vector space over a field F with
charF # 2.

m A quadratic form (symmetric bilinear form) is a kind of
generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2.
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Preliminaries

m Let V be a n-dimensional vector space over a field F with
charF # 2.

m A quadratic form (symmetric bilinear form) is a kind of
generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2.

Definition (Coordinate independent)

A quadratic form Q on V is a function from V to F satisfying
the following two conditions:

(1) Q(cv) = c?Q(v) forany v € V,c € F;

(2) B(v,w) := 3(Q(v + w) — Q(v) — Q(w)) is bilinear.
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In R", consider Q(x1, X2, ,Xn) = X2 + X3 + -+ - + X2.

n
Forv=(v1, -+ ,vn),w = (wi, - ,w,) in R

m B(v,w):=(v,w) =viwg + - + vw,

m [he matrix form associated with @ in the standard basis is
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In R", consider Q(x1, X2, ,Xn) = X2 + X3 + -+ - + X2.

n
Forv=(v1, -+ ,vn),w = (wi, - ,w,) in R

m B(v,w):=(v,w) =viwg + - + vw,

m [he matrix form associated with @ in the standard basis is

1 0 0
0 1

0
0 0 1

In a chosen basis, there are canonical bijections:

quadratic symmetric bilinear symmetric
form on V form on V n X n matrix
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Definition
The quadratic forms Q1, @ on V are equivalent if 3 a linear
isomorphism A: V — V sit Q(Av) = Qi(v) for any v € V.

e.g, Q(x,y) = x*> —y? and Q'(x,y) = xy are equivalent on R?.
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Definition
The quadratic forms Q1, @ on V are equivalent if 3 a linear
isomorphism A: V — V sit Q(Av) = Qi(v) for any v € V.

e.g, Q(x,y) = x*> —y? and Q'(x,y) = xy are equivalent on R?.

Definition
Q is called nondegenerate if a matrix representation M of Q is
invertible. If detM = 0, we call a quadratic form degenerate.

e.g., On R?, Q(x,y) = x2 — y? is nondegenerate.
On R3, Q(x,y, z) = x2 — y? is degenerate.
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Any nondegenerate quadratic form on Fg is equivalent to one of

XA X2 X2 or X4 X2+ A3

for some nonsqaure \ € F,. Denote dot,, Adot, respectively.
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Theorem

Any nondegenerate quadratic form on Fg is equivalent to one of

XA X2 X2 or X4 X2+ A3

for some nonsqaure \ € F,. Denote dot,, Adot, respectively.

In particular, there are three possible 1-dimensional quadratic
subspaces in (IF7, dot,) up to equivalence:

(1) doty, (2) Adoty, and the degenerate case (3) 0.
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The type of a line / through the origin in (IF7, dot,) is
m spacelike if |/| is a square,
m timelike if |/| is a nonsquare, and
u lightlike if |/| is 0.

Here, |/| := dot,(x) for any nonzero x in /.
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m (V, Q) is called a quadratic space;

m (Vi, Q1) and (V2, Q) are isometrically isomorphic if 3 a
linear map A: Vi — Vu sit Qa(Av) = Qi(v).

m For W C V, (W, Q|w) is a quadratic subspace.
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m (V, Q) is called a quadratic space;

m (Vi, Q1) and (V2, Q) are isometrically isomorphic if 3 a
linear map A: Vi — Vu sit Qa(Av) = Qi(v).

m For W C V, (W, Q|w) is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let Uy, U,, V1, Vo be quadratic spaces where Vi, and V, are
isometrically isomorphic. If Uy & V1 = Uy & Vb, then Uy = Us.
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m (V, Q) is called a quadratic space;

m (Vi, Q1) and (V2, Q) are isometrically isomorphic if 3 a
linear map A: Vi — Vu sit Qa(Av) = Qi(v).

m For W C V, (W, Q|w) is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let Uy, U,, V1, Vo be quadratic spaces where Vi, and V, are
isometrically isomorphic. If Uy & V1 = Uy & Vb, then Uy = Us.

Theorem (Witt's Extension Theorem)

Let X1 ZXo, X1 =U1 &V, Xo=U® Vo, f: Vi — V, an
isometry. Then there is an isomtery F : X1 — X, such that
F|\/1 =f and F(Ul) = U2.
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Our interest: (F7,dot(x)) where dot(x) = x7 + - - - + x3.

We call it a (nondegenerate) quadratic space of Euclidean type.
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Q. What about quadratic subspaces of (Fg,dot(x))?
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Our interest: (F7,dot(x)) where dot(x) = x7 + - - - + x3.

We call it a (nondegenerate) quadratic space of Euclidean type.

Q. What about quadratic subspaces of (Fg,dot(x))?

Possible k-dimensional quadratic subspaces:

doty,doty_1 ®0,--- ,dot; @ 0k !
Adoty, Adotx_1 0, - - -, Adoty & 0k1
Ok
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Our interest: (F7,dot(x)) where dot(x) = x7 + - - - + x3.

We call it a (nondegenerate) quadratic space of Euclidean type.

Q. What about quadratic subspaces of (Fg,dot(x))?

Possible k-dimensional quadratic subspaces:

doty,doty_1 ®0,--- ,dot; @ 0k !

Adoty, Adoty_1 ©0,- -+, Adot; @ 0K1

0k
Let W be a doty-subspace if W is isometrically isomorphic to
doty with dot,|w .

= We are only looking at dot-subspaces of (IFg, dot(x)).
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m Define a poset E,(q) := (doty p, C).
m Call it the Euclidean poset.
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m Define a poset E,(q) := (doty p, C).
m Call it the Euclidean poset.
m We do not consider the empty set to be a subspace.

m We consider the zero space as the least element of the
Euclidean poset.
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Example. In E3(q) = (F3, dot3(x)),

/F\
\/\ /\\
\\/

((1,0,0),(0,1,0)), P> =((1,0,0),(0,0,1)),
((0,1,0), (0 0,1)),
<(1 0, 0)> <(07 170)>v = <(0’0? 1)>

Py
P;
h



Short title
L Main Results

LThe Euclidean posets

Example. In E3(q) = (F3, dot3(x)),

/\\
\/\ /\\
\\/

((1,0,0),(0,1,0)), P> =((1,0,0),(0,0,1)),
((0,1,0), ( 0,1)),
<(1 0, 0)> (07 170)> = <(0’0? 1)>

=
Notice that any vertex in E,(q) has the same degree by Witt's
Theorems.

Py
P;
h
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Lemma

For each k and n, the number of doty subspaces in dot, containing
a spacelike line is |dotx_1 p_1].

Proof.

This counting is independent of which spacelike line is chosen by
Witt's Extension Theorem. Let L be a spacelike line. Then we get
the following bijection map.

(dotk_1 subspaces in (dot, /L)) — (dot, containing L)
WL — Lo W

It is easy to show that this map is bijective by its definition. [
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Euclidean flag is a (maximal) chain in a poset E,(q). We count
flags in two different ways.

For each n, we have

‘d0t17k| ]dotk,,,

Note that

= ]dotl,,,\|dotk,17,,,1|.

|doty x| = spacelike lines in a fixed dot,, subspace
|doty | = the number of dot, subspaces in a fixed dot,
|doty | = the number of spacelike lines in fixed a dot,

|dotx_1 n—1| = the number of dot, subspaces containing a spacelike line.

L]
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_ ‘dotl’anOtl’n,ﬂ
| ‘d0t2v"|_7|dot1,2\

\doth\ ‘d0t27n_1| — |d0t1,n| |d0t1,n_1HdOt1’n_2| — |d0t1,n||d0t1,,,_1Hdotl?n_;
[doty, 3] |doty 3 [doty 2 |dot,3[|dot,o]

Therefore, we have

|C|Ot37n|:

|doty,n|[dots,n—1|- - - [doty,n—k+1]
|d0t17k| cee |d0t1’1|

|d0tk’n| =

(1)
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_ ‘dotl’anOtl’n,ﬂ
| ‘d0t2v"|_7|dot1,2\

|C|Ot |: |doty n||dotz,n—1| __|doty,n| |dots n—1||dots n—2| __|dots,n||dots n_1||dots
3,n |d0t1,3‘ ‘d0t173| |d0t172‘ ‘d0t173|‘d0t172|
Therefore, we have
|doty,n|[dots,n—1|- - - [doty,n—k+1]
|doty k|- - - |doty 1]

|d0tk’n| =

(1)

Definition

For any n and k, we define
m [k]g := |doty kl;
m [n]g! = [n]qg--[1]4:
] (Z)d = |dot p| = m.
We call these dot-analogs. In particular, we call (}),

dot-binomial coefficients. We adopt the convention that
‘dOtLo’ = 1.
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m The number of maximal Euclidean flags in E,(q) is
[nlg! = [nly[n—1]y---[Ug
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m The number of maximal Euclidean flags in E,(q) is
[nlg! = [nlgn—1]y---[g

m Note that Euclidean flags are bijective up to a factor of 2"
with ON basis.

(" span(e1) C span(er, &) C -+ C span(er, €, -+, €n).)
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LThe Euclidean posets

m The number of maximal Euclidean flags in E,(q) is
[nlg! = [nlgn—1]y---[g

m Note that Euclidean flags are bijective up to a factor of 2"
with ON basis.

(" span(e1) C span(er, &) C -+ C span(er, €, -+, €n).)

[n] ;! = the number of the Euclidean flags

= the number of orthonormal bases up to +
|0(n, q)|

2!7
= [0(n, )| = 2" [n] .
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(0),= mp oy

’O(nv q)‘ . 2k ) 2nik
|O(k, q) x O(n =k, q)| 2n
O(n, q)

‘thxow—hw'
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g-analogues

dot-analogues

space Fo (Fg, dotn)
subspace a k-dimensional subspace of Fg a doty-subspace of dot,,
bracket the number of lines in Fg the number of spacelike lines in (Fy, dot,)
factorial [n]! [n],!
poset Ln(q) En(q)
group || [GL(n,q)| = ¢"""D/?(q —1)"[n],! |0(n, q)| = 2" [n],!
' flag' flags in Fg Euclidean flags in (Fg.dot,)
binomial (n) _ [n]q! GL(n,q) (n) _ [n]q! _ O(n,q)
coefficient k/q = [Klg!l(n—k)lg" — (é g) k/d = [Kla'[(n—k)lat — | O(k.q)x O(n—k,q)

Table: The g-analogues and the dot-analogues.
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Question. How to count |dotj x|?

d0t17 n

7

In (F7,x¢ + x3 + -+ x3), the number of spacelike lines,
is following:

Spacelike |q=1mod 4 | q=3 mod 4
n—1 n—1
. nfl_,’_ o n—1_ )
n=4k+3 - g 2‘7"_1
. q"*l-i-q )
n=4k+1 R 7n_1f -
n=4k+2 14 g an,z
n— 4k q”‘l%ﬁf

Table: The number of spacelike lines in dot,,.
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More results

m A new isometric invariant of combinatorial type on quadratic
spaces over finite fields. It can distinguish even degenerate
cases.

m Recover the size of Minkowski's sphere.

m Existence of types of quadratic subspaces in [Fg.

m E,(q) is rank symmetric, rank unimodal, log-concave, and
Sperner.

m Compute the Mobius function for E,(q).

m We study its combinatorial properties such as Pascal’s
triangle, the dot-binomial coefficients are rational in g,
compute limg_1 (Z)d.
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Question. Can we find other combinatorial descriptions of
dot-binomial coefficients?
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Thank you for your attention!
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