The dot-binomial coefficients

Semin Yoo
University of Rochester

7th annual Mississippi Discrete Math Workshop
October 27th, 2019
— Motivation

1. Motivation

Motivation

The Gaussian binomial coefficients (or q-binomial coefficients)

$$
\begin{aligned}
\binom{n}{k}_{q} & =\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)} \\
& =\text { the number of } k \text {-dimensional subspaces of } \mathbb{F}_{q}^{n}
\end{aligned}
$$

Motivation

The Gaussian binomial coefficients (or q-binomial coefficients)

$$
\begin{aligned}
\binom{n}{k}_{q} & =\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)} \\
& =\text { the number of } k \text {-dimensional subspaces of } \mathbb{F}_{q}^{n}
\end{aligned}
$$

- There are a lot of works associated with \mathbb{F}_{q}^{n}.

■ We add one more algebraic structure, called quadratic form.

- We will count special quadratic subspaces of $\left(\mathbb{F}_{q}^{n}, Q\right)$, where $Q=x_{1}^{2}+\cdots+x_{n}^{2}$.
- This count gives us a new binomial coefficients, called the dot-binomial coefficients.

	q-analogues	dot-analogues
space	\mathbb{F}_{q}^{n}	$\left(\mathbb{F}_{q}^{n}, \mathrm{dot}_{n}\right)$
subspace	a k-dimensional subspace of \mathbb{F}_{q}^{n}	$a \operatorname{dot}_{k}$-subspace of dot_{n}
bracket	the number of lines in \mathbb{F}_{q}^{n}	the number of spacelike lines in (\mathbb{F}_{q}^{n}, dot $_{n}$)
factorial	$[n]_{q}$!	$[n]_{d}$!
poset	$L_{n}(q)$	$E_{n}(q)$
group	$\|G L(n, q)\|=q^{n(n-1) / 2}(q-1)^{n}[n]{ }_{q}!$	$\|O(n, q)\|=2^{n}[n]_{d}!$
flag	flags in \mathbb{F}_{q}^{n}	Euclidean flags in (\mathbb{F}_{q}^{n}, dot $_{n}$)
binomial coefficient	$\binom{n}{k}_{q}=\frac{[n]_{q}!}{\left.[k]_{q}!(n-k)\right]_{q}!}=\left\|\frac{G L(n, q)}{\left(\begin{array}{cc} A & C \\ 0 & B \end{array}\right)}\right\|$	$\binom{n}{k}_{d}=\frac{[n]_{d}!}{\left.[k]_{d}!(n-k)\right]_{d}!}=\left\|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right\|$

Table: The q-analogues and the dot-analogues.

Combinatorics of quadratic spaces over finite fields. Arxiv: 1910.03482

Outline

1 Motivation

2 Preliminaries
■ The theory of quadratic forms

3 Main Results

- The Euclidean posets
- More results

4 References

LPreliminaries

- The theory of quadratic forms

Outline

1 Motivation

2 Preliminaries

- The theory of quadratic forms

3 Main Results

- The Euclidean posets
- More results

4 References

Preliminaries

■ Let V be a n-dimensional vector space over a field F with char $F \neq 2$.

- A quadratic form (symmetric bilinear form) is a kind of generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2 .

Preliminaries

■ Let V be a n-dimensional vector space over a field F with char $F \neq 2$.

- A quadratic form (symmetric bilinear form) is a kind of generalization of an inner product.

Definition (Coordinate dependent)

A quadratic form Q is a homogeneous polynomial of degree 2 .

Definition (Coordinate independent)

A quadratic form Q on V is a function from V to F satisfying the following two conditions:
(1) $Q(c v)=c^{2} Q(v)$ for any $v \in V, c \in F$;
(2) $B(v, w):=\frac{1}{2}(Q(v+w)-Q(v)-Q(w))$ is bilinear.

- The theory of quadratic forms

Example

In \mathbb{R}^{n}, consider $Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$.
For $v=\left(v_{1}, \cdots, v_{n}\right), w=\left(w_{1}, \cdots, w_{n}\right)$ in \mathbb{R}^{n},

- $B(v, w):=\langle v, w\rangle=v_{1} w_{1}+\cdots+v_{n} w_{n}$
- The matrix form associated with Q in the standard basis is

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

Example

In \mathbb{R}^{n}, consider $Q\left(x_{1}, x_{2}, \cdots, x_{n}\right)=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$.
For $v=\left(v_{1}, \cdots, v_{n}\right), w=\left(w_{1}, \cdots, w_{n}\right)$ in \mathbb{R}^{n},
■ $B(v, w):=\langle v, w\rangle=v_{1} w_{1}+\cdots+v_{n} w_{n}$

- The matrix form associated with Q in the standard basis is

$$
\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
$$

In a chosen basis, there are canonical bijections:
quadratic

form on $V$$\Leftrightarrow$\begin{tabular}{c}
symmetric bilinear

form on V

\Leftrightarrow

symmetric

$n \times n$ matrix
\end{tabular}

Definition

The quadratic forms Q_{1}, Q_{2} on V are equivalent if \exists a linear isomorphism $A: V \longrightarrow V$ s.t $Q_{2}(A v)=Q_{1}(v)$ for any $v \in V$.
e.g, $Q(x, y)=x^{2}-y^{2}$ and $Q^{\prime}(x, y)=x y$ are equivalent on \mathbb{R}^{2}.

Definition

The quadratic forms Q_{1}, Q_{2} on V are equivalent if \exists a linear isomorphism $A: V \longrightarrow V$ s.t $Q_{2}(A v)=Q_{1}(v)$ for any $v \in V$. e.g, $Q(x, y)=x^{2}-y^{2}$ and $Q^{\prime}(x, y)=x y$ are equivalent on \mathbb{R}^{2}.

Definition

Q is called nondegenerate if a matrix representation M of Q is invertible. If $\operatorname{det} M=0$, we call a quadratic form degenerate.
e.g., On $\mathbb{R}^{2}, Q(x, y)=x^{2}-y^{2}$ is nondegenerate.

On $\mathbb{R}^{3}, Q(x, y, z)=x^{2}-y^{2}$ is degenerate.

Theorem

Any nondegenerate quadratic form on \mathbb{F}_{q}^{n} is equivalent to one of

$$
x_{1}^{2}+\cdots+x_{n-1}^{2}+x_{n}^{2} \text { or } x_{1}^{2}+\cdots+x_{n-1}^{2}+\lambda x_{n}^{2}
$$

for some nonsqaure $\lambda \in \mathbb{F}_{q}$. Denote $\operatorname{dot}_{n}, \lambda$ dot $_{n}$ respectively.

Theorem

Any nondegenerate quadratic form on \mathbb{F}_{q}^{n} is equivalent to one of

$$
x_{1}^{2}+\cdots+x_{n-1}^{2}+x_{n}^{2} \text { or } x_{1}^{2}+\cdots+x_{n-1}^{2}+\lambda x_{n}^{2}
$$

for some nonsqaure $\lambda \in \mathbb{F}_{q}$. Denote $\operatorname{dot}_{n}, \lambda$ dot $_{n}$ respectively.
In particular, there are three possible 1-dimensional quadratic subspaces in $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$ up to equivalence:
(1) dot_{1}, (2) $\lambda \operatorname{dot}_{1}$, and the degenerate case (3) 0 .

Definition

The type of a line $/$ through the origin in $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}_{n}\right)$ is

- spacelike if $|/|$ is a square,
- timelike if $|/|$ is a nonsquare, and
- lightlike if $|I|$ is 0 .

Here, $\mid \|:=\operatorname{dot}_{n}(\mathbf{x})$ for any nonzero \mathbf{x} in $/$.

- (V, Q) is called a quadratic space;

■ $\left(V_{1}, Q_{1}\right)$ and $\left(V_{2}, Q_{2}\right)$ are isometrically isomorphic if \exists a linear map $A: V_{1} \rightarrow V_{2}$ s.t $Q_{2}(A v)=Q_{1}(v)$.
■ For $W \subset V,(W, Q \mid W)$ is a quadratic subspace.

- (V, Q) is called a quadratic space;
- $\left(V_{1}, Q_{1}\right)$ and $\left(V_{2}, Q_{2}\right)$ are isometrically isomorphic if \exists a linear $\operatorname{map} A: V_{1} \rightarrow V_{2}$ s.t $Q_{2}(A v)=Q_{1}(v)$.
- For $W \subset V,(W, Q \mid W)$ is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let $U_{1}, U_{2}, V_{1}, V_{2}$ be quadratic spaces where V_{1} and V_{2} are isometrically isomorphic. If $U_{1} \oplus V_{1} \cong U_{2} \oplus V_{2}$, then $U_{1} \cong U_{2}$.

- (V, Q) is called a quadratic space;
- $\left(V_{1}, Q_{1}\right)$ and $\left(V_{2}, Q_{2}\right)$ are isometrically isomorphic if \exists a linear map $A: V_{1} \rightarrow V_{2}$ s.t $Q_{2}(A v)=Q_{1}(v)$.
- For $W \subset V,(W, Q \mid W)$ is a quadratic subspace.

Theorem (Witt's Cancellation Theorem)

Let $U_{1}, U_{2}, V_{1}, V_{2}$ be quadratic spaces where V_{1} and V_{2} are isometrically isomorphic. If $U_{1} \oplus V_{1} \cong U_{2} \oplus V_{2}$, then $U_{1} \cong U_{2}$.

Theorem (Witt's Extension Theorem)

Let $X_{1} \cong X_{2}, X_{1}=U_{1} \oplus V_{1}, X_{2}=U_{2} \oplus V_{2}, f: V_{1} \longrightarrow V_{2}$ an isometry. Then there is an isomtery $F: X_{1} \longrightarrow X_{2}$ such that $\left.F\right|_{V_{1}}=f$ and $F\left(U_{1}\right)=U_{2}$.

Our interest: $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$ where $\operatorname{dot}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
We call it a (nondegenerate) quadratic space of Euclidean type.

Our interest: $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$ where $\operatorname{dot}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
We call it a (nondegenerate) quadratic space of Euclidean type.
Q. What about quadratic subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$?

Our interest: $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$ where $\operatorname{dot}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
We call it a (nondegenerate) quadratic space of Euclidean type.
Q. What about quadratic subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$?

Possible k-dimensional quadratic subspaces:

$$
\begin{aligned}
& \operatorname{dot}_{k}, \operatorname{dot}_{k-1} \oplus 0, \cdots, \operatorname{dot}_{1} \oplus 0^{k-1} \\
& \lambda \operatorname{dot}_{k}, \lambda \operatorname{dot}_{k-1} \oplus 0, \cdots, \lambda \operatorname{dot}_{1} \oplus 0^{k-1} \\
& 0^{k}
\end{aligned}
$$

Our interest: $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$ where $\operatorname{dot}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2}$.
We call it a (nondegenerate) quadratic space of Euclidean type.
Q. What about quadratic subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$?

Possible k-dimensional quadratic subspaces:

$$
\begin{aligned}
& \operatorname{dot}_{k}, \operatorname{dot}_{k-1} \oplus 0, \cdots, \operatorname{dot}_{1} \oplus 0^{k-1} \\
& \lambda \operatorname{dot}_{k}, \lambda \operatorname{dot}_{k-1} \oplus 0, \cdots, \lambda \operatorname{dot}_{1} \oplus 0^{k-1} \\
& 0^{k}
\end{aligned}
$$

Let W be a $\boldsymbol{d o t}_{\mathbf{k}}$-subspace if W is isometrically isomorphic to dot_{k} with $\operatorname{dot}_{n} \mid w$.
\Rightarrow We are only looking at dot_{k}-subspaces of $\left(\mathbb{F}_{q}^{n}, \operatorname{dot}(\mathbf{x})\right)$.

Outline

1 Motivation

2 Preliminaries
 ■ The theory of quadratic forms

3 Main Results

- The Euclidean posets
- More results

4 References

■ Define a poset $E_{n}(q):=\left(\operatorname{dot}_{k, n}, \subset\right)$.

- Call it the Euclidean poset.

■ Define a poset $E_{n}(q):=\left(\operatorname{dot}_{k, n}, \subset\right)$.

- Call it the Euclidean poset.
- We do not consider the empty set to be a subspace.
- We consider the zero space as the least element of the Euclidean poset.

ᄂThe Euclidean posets
Example. In $E_{3}(q)=\left(\mathbb{F}_{3}^{3}, \operatorname{dot}_{3}(\mathbf{x})\right)$,

$$
\begin{aligned}
P_{1} & =\langle(1,0,0),(0,1,0)\rangle, \quad P_{2}=\langle(1,0,0),(0,0,1)\rangle, \\
P_{3} & =\langle(0,1,0),(0,0,1)\rangle, \\
I_{1} & =\langle(1,0,0)\rangle, \quad I_{2}=\langle(0,1,0)\rangle, \quad I_{3}=\langle(0,0,1) .\rangle
\end{aligned}
$$

L Main Results

- The Euclidean posets

Example. In $E_{3}(q)=\left(\mathbb{F}_{3}^{3}, \operatorname{dot}_{3}(\mathbf{x})\right)$,

$$
\begin{aligned}
& P_{1}=\langle(1,0,0),(0,1,0)\rangle, P_{2}=\langle(1,0,0),(0,0,1)\rangle, \\
& P_{3}=\langle(0,1,0),(0,0,1)\rangle, \\
& I_{1}=\langle(1,0,0)\rangle, I_{2}=\langle(0,1,0)\rangle, I_{3}=\langle(0,0,1) .\rangle
\end{aligned}
$$

Notice that any vertex in $E_{n}(q)$ has the same degree by Witt's Theorems.

Lemma

For each k and n, the number of dot $_{k}$ subspaces in dot $_{n}$ containing a spacelike line is $\left|\operatorname{dot}_{k-1, n-1}\right|$.

Proof.

This counting is independent of which spacelike line is chosen by Witt's Extension Theorem. Let L be a spacelike line. Then we get the following bijection map.

$$
\begin{array}{clc}
\left(\operatorname{dot}_{k-1} \text { subspaces in }\left(\operatorname{dot}_{n} / L\right)\right) & \longrightarrow & \left(\operatorname{dot}_{k} \text { containing } L\right) \\
W L & \mapsto & L \oplus W
\end{array}
$$

It is easy to show that this map is bijective by its definition.

Euclidean flag is a (maximal) chain in a poset $E_{n}(q)$. We count flags in two different ways.

Theorem

For each n, we have

$$
\left|\operatorname{dot}_{1, k}\right|\left|\operatorname{dot}_{k, n}\right|=\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{k-1, n-1}\right| .
$$

Proof.

Note that
$\left|\operatorname{dot}_{1, k}\right|=$ spacelike lines in a fixed dot_{n} subspace $\left|\operatorname{dot}_{k, n}\right|=$ the number of dot_{k} subspaces in a fixed dot_{n} $\left|\operatorname{dot}_{1, n}\right|=$ the number of spacelike lines in fixed a dot ${ }_{n}$ $\left|\operatorname{dot}_{k-1, n-1}\right|=$ the number of dot_{k} subspaces containing a spacelike line.

■ $\left|\operatorname{dot}_{2, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right|}{\left|\operatorname{dot}_{1,2}\right|}$.

$$
\left|\operatorname{dot}_{3, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{2, n-1}\right|}{\left|\operatorname{dot}_{1,3}\right|}=\frac{\left|\operatorname{dot}_{1, n}\right|}{\left|\operatorname{dot}_{1,3}\right|} \frac{\left|\operatorname{dot}_{1, n-1}\right|\left|\operatorname{dot}_{1, n-2}\right|}{\left|\operatorname{dot}_{1,2}\right|}=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right| \mid \operatorname{dot}_{1, n-2}}{\left|\operatorname{dot}_{1,3}\right|\left|\operatorname{dot}_{1,2}\right|}
$$

Therefore, we have

$$
\begin{equation*}
\left|\operatorname{dot}_{k, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right| \cdots\left|\operatorname{dot}_{1, n-k+1}\right|}{\left|\operatorname{dot}_{1, k}\right| \cdots\left|\operatorname{dot}_{1,1}\right|} . \tag{1}
\end{equation*}
$$

L Main Results

- The Euclidean posets

■ $\left|\operatorname{dot}_{2, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right|}{\left|\operatorname{dot}_{1,2}\right|}$.

$$
\left|\operatorname{dot}_{3, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{2, n-1}\right|}{\left|\operatorname{dot}_{1,3}\right|}=\frac{\left|\operatorname{dot}_{1, n}\right|}{\left|\operatorname{dot}_{1,3}\right|} \frac{\left|\operatorname{dot}_{1, n-1}\right|\left|\operatorname{dot}_{1, n-2}\right|}{\left|\operatorname{dot}_{1,2}\right|}=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right| \mid \operatorname{dot}_{1, n-2}}{\left|\operatorname{dot}_{1,3}\right|\left|\operatorname{dot}_{1,2}\right|}
$$

Therefore, we have

$$
\begin{equation*}
\left|\operatorname{dot}_{k, n}\right|=\frac{\left|\operatorname{dot}_{1, n}\right|\left|\operatorname{dot}_{1, n-1}\right| \cdots\left|\operatorname{dot}_{1, n-k+1}\right|}{\left|\operatorname{dot}_{1, k}\right| \cdots\left|\operatorname{dot}_{1,1}\right|} \tag{1}
\end{equation*}
$$

Definition

For any n and k, we define
■ $[k]_{d}:=\left|\operatorname{dot}_{1, k}\right| ;$
■ $[n]_{d}!:=[n]_{d} \cdots[1]_{d} ;$
■ $\binom{n}{k}_{d}:=\left|\operatorname{dot}_{k, n}\right|=\frac{[n!]_{d}}{[k!]_{d}[(n-k)!]_{d}}$.
We call these dot-analogs. In particular, we call $\binom{n}{k}_{d}$
dot-binomial coefficients. We adopt the convention that $\left|\operatorname{dot}_{1,0}\right|:=1$.

- The number of maximal Euclidean flags in $E_{n}(q)$ is $[n]_{d}!=[n]_{d}[n-1]_{d} \cdots[1]_{d}$
- The number of maximal Euclidean flags in $E_{n}(q)$ is $[n]_{d}!=[n]_{d}[n-1]_{d} \cdots[1]_{d}$
■ Note that Euclidean flags are bijective up to a factor of 2^{n} with ON basis.

$$
\left(\because \operatorname{span}\left(e_{1}\right) \subset \operatorname{span}\left(e_{1}, e_{2}\right) \subset \cdots \subset \operatorname{span}\left(e_{1}, e_{2}, \cdots, e_{n}\right) .\right)
$$

- The number of maximal Euclidean flags in $E_{n}(q)$ is $[n]_{d}!=[n]_{d}[n-1]_{d} \cdots[1]_{d}$
■ Note that Euclidean flags are bijective up to a factor of 2^{n} with ON basis.

$$
\left(\because \operatorname{span}\left(e_{1}\right) \subset \operatorname{span}\left(e_{1}, e_{2}\right) \subset \cdots \subset \operatorname{span}\left(e_{1}, e_{2}, \cdots, e_{n}\right) .\right)
$$

$$
\begin{aligned}
{[n]_{d}!} & =\text { the number of the Euclidean flags } \\
& =\text { the number of orthonormal bases up to } \pm \\
& =\frac{|O(n, q)|}{2^{n}} \\
\Rightarrow|O(n, q)| & =2^{n}[n]_{d}!.
\end{aligned}
$$

$$
\begin{aligned}
\binom{n}{k}_{d} & =\frac{[n]_{d}!}{[k]_{d}![n-k]_{d}!} \\
& =\frac{|O(n, q)|}{|O(k, q) \times O(n-k, q)|} \cdot \frac{2^{k} \cdot 2^{n-k}}{2^{n}} \\
& =\left|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right| .
\end{aligned}
$$

	q-analogues	dot-analogues
space	\mathbb{F}_{q}^{n}	$\left(\mathbb{F}_{q}^{n}\right.$, dot $\left._{n}\right)$
subspace	a k-dimensional subspace of \mathbb{F}_{q}^{n}	a dot ${ }_{k}$-subspace of dot ${ }_{n}$
bracket	the number of lines in \mathbb{F}_{q}^{n}	the number of spacelike lines in $\left(\mathbb{F}_{q}^{n}\right.$, dot $\left.{ }_{n}\right)$
factorial	$[n]_{q}!$	$[n]_{d}!$
poset	$L_{n}(q)$	$E_{n}(q)$
group	$\|G L(n, q)\|=q^{n(n-1) / 2}(q-1)^{n}[n]_{q}!$	$\|O(n, q)\|=2^{n}[n]_{d}!$
flag	flags in \mathbb{F}_{q}^{n}	Euclidean flags in $\left(\mathbb{F}_{q}^{n}\right.$, dot $\left._{n}\right)$
binomial coefficient	$\left.\begin{array}{l}n \\ k\end{array}\right)_{q}=\frac{[n]_{q}!}{[k]_{q}![(n-k)]_{q}!}=\left\|\frac{G L(n, q)}{\binom{A}{A}}\right\|$	$\left(\begin{array}{l}n \\ 0 \\ k\end{array}\right)_{d}=\frac{[n]_{d}!}{[k]!(n-k)]_{d}!}=\left\|\frac{O(n, q)}{O(k, q) \times O(n-k, q)}\right\|$

Table: The q-analogues and the dot-analogues.

Question. How to count $\left|\operatorname{dot}_{1, k}\right|$?

Theorem

$\operatorname{In}\left(\mathbb{F}_{q}^{n}, x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)$, the number of spacelike lines, $\left|\operatorname{dot}_{1, n}\right|$, is following:

Spacelike	$\mathbf{q} \equiv \mathbf{1} \bmod 4$	$\mathbf{q} \equiv \mathbf{3} \bmod \mathbf{4}$
$n=4 k+3$	$\frac{q^{n-1}+q^{\frac{n-1}{2}}}{2}$	$\frac{q^{n-1}-q^{\frac{n-1}{2}}}{2}$
$n=4 k+1$		$\frac{q^{n-1}+q^{\frac{n-1}{2}}}{2}$
$n=4 k+2$	$\frac{q^{n-1}-q^{\frac{n-2}{2}}}{2}$	$\frac{q^{n-1}+q^{\frac{n-2}{2}}}{2}$
$n=4 k$		$\frac{q^{n-1}-q^{\frac{n-2}{2}}}{2}$

Table: The number of spacelike lines in dot $_{n}$.

Outline

1 Motivation

2 Preliminaries
 ■ The theory of quadratic forms

3 Main Results

- The Euclidean posets

■ More results

4 References

More results

- A new isometric invariant of combinatorial type on quadratic spaces over finite fields. It can distinguish even degenerate cases.
- Recover the size of Minkowski's sphere.
- Existence of types of quadratic subspaces in \mathbb{F}_{q}^{n}.
- $E_{n}(q)$ is rank symmetric, rank unimodal, log-concave, and Sperner.
- Compute the Mobius function for $E_{n}(q)$.
- We study its combinatorial properties such as Pascal's triangle, the dot-binomial coefficients are rational in q, compute $\lim _{q \rightarrow 1}\binom{n}{k}_{d}$.

Question. Can we find other combinatorial descriptions of dot-binomial coefficients?

References

Pete L. Clark
Quadratic forms chapter I: Witt's theory
http://math.uga.edu/~pete/quadraticforms.pdf
T
Keith Conrad
Bilinear Forms
https:
//kconrad.math.uconn.edu/blurbs/linmultialg/bilinearform.pdf
周 Semin Yoo (2019)
Combinatorial structures of quadratic spaces over finite fields
Preprint

Thank you for your attention!

