Switching, Local Complementation and Pointed Swaps in Binary matroids

Jagdeep Singh*, James Oxley

Department of Mathematics
Louisiana State University
7th Annual Mississippi Discrete Math Workshop, October 2019

Three Graph Operations

- Complementation: Complement inside K_{n}

Three Graph Operations

- Complementation: Complement inside K_{n}

Three Graph Operations

- Switching: Complement inside a vertex bond of K_{n}

Three Graph Operations

- Switching: Complement inside a vertex bond of K_{n}

Three Graph Operations

- Switching: Complement inside a vertex bond of K_{n}

Three Graph Operations

- Switching: Complement inside a vertex bond of K_{n}

Three Graph Operations

- Local Complementation: Complement in the neighbourhood of a vertex

Three Graph Operations

- Local Complementation: Complement in the neighbourhood of a vertex

Three Graph Operations

- Local Complementation: Complement in the neighbourhood of a vertex

Three Graph Operations

- Local Complementation: Complement in the neighbourhood of a vertex

All Graphs Obtainable

- Complementation can be obtained via switchings and local complementations.

All Graphs Obtainable

- Complementation can be obtained via switchings and local complementations.

Theorem

All n-vertex graphs can be obtained from K_{n} via a sequence of switchings and local complementations.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Consider above over GF(2).

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Consider above over GF(2).
- $\left\{e_{1}, e_{2}, e_{3}\right\}$ is independent.

Matroid prerequisites

$$
\begin{aligned}
& \begin{array}{lllllll}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7}
\end{array} \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Consider above over GF(2).
- $\left\{e_{1}, e_{2}, e_{3}\right\}$ is independent.
- Matroids from matrices over GF(2) : Binary.

Matroid prerequisites

$$
\begin{aligned}
& \begin{array}{lllllll}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7}
\end{array} \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Consider above over GF(2).
- $\left\{e_{1}, e_{2}, e_{3}\right\}$ is independent.
- Matroids from matrices over GF(2) : Binary.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Binary projective geometries P_{r} : Vector space over GF(2) having all vectors except zero vector.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Binary projective geometries P_{r} : Vector space over GF(2) having all vectors except zero vector.
- r (rank) : size of maximal independent set.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Binary projective geometries P_{r} : Vector space over GF(2) having all vectors except zero vector.
- r (rank) : size of maximal independent set.
- Above is P_{3}.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Binary projective geometries P_{r} : Vector space over GF(2) having all vectors except zero vector.
- r (rank) : size of maximal independent set.
- Above is P_{3}.
- All rank r binary matroids : Restrictions of P_{r}.

Matroid prerequisites

$$
\begin{aligned}
& \begin{array}{lllllll}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7}
\end{array} \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Cocircuit : Minimal set whose removal decrease the rank by 1 .

Matroid prerequisites

$$
\begin{aligned}
& \begin{array}{lllllll}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7}
\end{array} \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Cocircuit : Minimal set whose removal decrease the rank by 1.
- Columns having 1 as their first entry,

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
\left(\begin{array}{cc}
1 & 0
\end{array} 0\right. & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Cocircuit : Minimal set whose removal decrease the rank by 1 .
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.

Matroid prerequisites

$$
\begin{aligned}
& \begin{array}{lllllll}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7}
\end{array} \\
& \left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

- Cocircuit : Minimal set whose removal decrease the rank by 1.
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.
- Columns having 1 as their second entry, $\left\{e_{2}, e_{4}, e_{6}, e_{7}\right\}$.

Matroid prerequisites

- Cocircuit : Minimal set whose removal decrease the rank by 1 .
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.
- Columns having 1 as their second entry, $\left\{e_{2}, e_{4}, e_{6}, e_{7}\right\}$.
- Closure of a set is the span.

Matroid prerequisites

- Cocircuit : Minimal set whose removal decrease the rank by 1 .
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.
- Columns having 1 as their second entry, $\left\{e_{2}, e_{4}, e_{6}, e_{7}\right\}$.
- Closure of a set is the span.
- $\operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)=\left\{e_{1}, e_{2}, e_{6}\right\}$.

Matroid prerequisites

$$
\left.\begin{array}{ccccccc}
e_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & e_{7} \\
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right)
$$

- Cocircuit : Minimal set whose removal decrease the rank by 1 .
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.
- Columns having 1 as their second entry, $\left\{e_{2}, e_{4}, e_{6}, e_{7}\right\}$.
- Closure of a set is the span.
- $\operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)=\left\{e_{1}, e_{2}, e_{6}\right\}$.
- $\operatorname{cl}\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)=$ All points.

Matroid prerequisites

- Cocircuit : Minimal set whose removal decrease the rank by 1 .
- Columns having 1 as their first entry, $\left\{e_{1}, e_{5}, e_{6}, e_{7}\right\}$.
- Columns having 1 as their second entry, $\left\{e_{2}, e_{4}, e_{6}, e_{7}\right\}$.
- Closure of a set is the span.
- $\operatorname{cl}\left(\left\{e_{1}, e_{2}\right\}\right)=\left\{e_{1}, e_{2}, e_{6}\right\}$.
- $\operatorname{cl}\left(\left\{e_{1}, e_{2}, e_{3}\right\}\right)=$ All points.
- Hyperplane : Closed set of rank $r-1$.
- Also, complements of cocircuits.

Main Idea

- Want all binary matroids of rank at most r starting with P_{r}.
- Operations:
- Complementation
- Switching
- Local complementation

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

- $U_{2,3} \oplus U_{1,1} \xrightarrow{\text { complementation inside } P_{3}} U_{3,3}$.

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

- $U_{2,3} \oplus U_{1,1} \xrightarrow{\text { complementation inside } P_{3}} U_{3,3}$.
- $\omega\left(U_{2,3} \oplus U_{1,1}\right)=U_{3,3}$.

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

Binary Matroid Analogues

- Complementation (inside fixed projective geometry P_{r})

- $U_{1,1} \xrightarrow{\text { complementation inside } P_{3}} M\left(K_{4}\right)$.
- $\omega\left(U_{1,1}\right)=M\left(K_{4}\right)$.

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

- $P\left(U_{2,3}, U_{2,3}\right) \xrightarrow{\text { switching }} U_{3,3}$

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

Binary Matroid Analogues

- Switching: Complement inside a cocircuit of P_{r}.

- $P\left(U_{2,3}, U_{2,3}\right) \xrightarrow{\text { switching }} U_{1,1}$

Composition of Switchings

- $\sigma_{C_{1}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*}$.

Composition of Switchings

- $\sigma_{C_{1}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*} \triangle C_{2}^{*}$.

Composition of Switchings

- $\sigma_{C_{1}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*} \Delta C_{2}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$ same as complementing in $C_{1}^{*} \Delta C_{2}^{*}$.

Composition of Switchings

- $\sigma_{C_{1}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*} \triangle C_{2}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$ same as complementing in $C_{1}^{*} \triangle C_{2}^{*}$.
- $C_{1}^{*} \triangle C_{2}^{*}$ itself a cocircuit.

Composition of Switchings

- $\sigma_{C_{1}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$: matroid on $E(M) \triangle C_{1}^{*} \triangle C_{2}^{*}$.
- $\sigma_{C_{1}^{*}} \sigma_{C_{2}^{*}}(M)$ same as complementing in $C_{1}^{*} \triangle C_{2}^{*}$.
- $C_{1}^{*} \triangle C_{2}^{*}$ itself a cocircuit.
- Composition of switchings is a switching.

Observations about switching and complementation

- Commute with each other.

Observations about switching and complementation

- Commute with each other.
- Both have order two.

Observations about switching and complementation

- Commute with each other.
- Both have order two.
- Composition of switchings is a switching.

Theorem

Matroids obtainable from P_{r} using switchings and complementation are isomorphic to one of $P_{r}, U_{0,0}, P_{r-1}$ and A_{r}.

Local Complementation

Local Complementation

- Edges incident with blue vertex v : Complete vertex bond $C^{*} \cap G$.

Local Complementation

- Edges incident with blue vertex v : Complete vertex bond $C^{*} \cap G$.
- Yellow edges : $\mathrm{cl}_{\mathrm{K}_{\mathrm{n}}}\left(\mathrm{C}^{*} \cap \mathrm{G}\right)-\mathrm{C}^{*}$.

Local Complementation

- Edges incident with blue vertex v : Complete vertex bond $C^{*} \cap G$.
- Yellow edges : $\mathrm{cl}_{\mathrm{K}_{\mathrm{n}}}\left(\mathrm{C}^{*} \cap \mathrm{G}\right)-\mathrm{C}^{*}$.
- Binary Matroids : Complement inside $\mathrm{cl}_{\mathrm{P}_{\mathrm{r}}}\left(\mathrm{C}^{*} \cap \mathrm{E}(\mathrm{M})\right)-\mathrm{C}^{*}$.

Local Complementation

- Local Complementation: Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}\left(\mathrm{C}^{*} \cap \mathrm{E}(\mathrm{M})\right)-\mathrm{C}^{*}$.

Local Complementation

- Local Complementation: Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}\left(\mathrm{C}^{*} \cap \mathrm{E}(\mathrm{M})\right)-\mathrm{C}^{*}$.

Local Complementation

- Local Complementation: Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}\left(\mathrm{C}^{*} \cap \mathrm{E}(\mathrm{M})\right)-\mathrm{C}^{*}$.

- $P\left(U_{2,3}, U_{2,3}\right) \xrightarrow{\text { L.C. }} M\left(K_{4}\right)$

Not all Binary Matroids are obtainable

Theorem (Oxley, Singh; 2019)

For $r>4$, not all binary matroids of rank at most r can be obtained from P_{r} using complementation, switching, and local complementation.

Not all Binary Matroids are obtainable

Theorem (Oxley, Singh; 2019)

For $r>4$, not all binary matroids of rank at most r can be obtained from P_{r} using complementation, switching, and local complementation.

- For $r \leq 4$, we can.

Coloring Notation

- Element e of P_{r} colored green : e is in $E(M)$.
- Colored red : Not in $E(M)$.
- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r.
- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in ($C^{*}-D^{*}$) both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.
- Switching: does not change Property 2.

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.
- Switching: does not change Property 2.
- Local Complementation :
- Complement inside cl $_{\mathrm{P}_{\mathrm{r}}}\left(\right.$ green elements of $\left.\mathrm{C}^{*}\right)-\mathrm{C}^{*}$

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.
- Switching: does not change Property 2.
- Local Complementation :
- Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}$ (green elements of $\left.\mathrm{C}^{*}\right)-\mathrm{C}^{*}$, i.e, a projective hyperplane.

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.
- Switching: does not change Property 2.
- Local Complementation :
- Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}$ (green elements of $\left.\mathrm{C}^{*}\right)-\mathrm{C}^{*}$, i.e, a projective hyperplane.
- Composition of switching and complementation.

Proof

- (Property 1) : For every two distinct projective cocircuits C^{*} and D^{*}, red and green elements in $\left(C^{*}-D^{*}\right)$ both have rank $r-1$.
- (Property 2): For any projective C^{*}, both red and green elements in C^{*} have rank r. Implied by Property 1.

Lemma

For $r>4$, there exists a 2-coloring X of P_{r} having Property 1.

- Complementation: does not change the properties.
- Switching: does not change Property 2.
- Local Complementation :
- Complement inside $\operatorname{cl}_{\mathrm{P}_{\mathrm{r}}}$ (green elements of $\left.\mathrm{C}^{*}\right)-\mathrm{C}^{*}$, i.e, a projective hyperplane.
- Composition of switching and complementation.
- does not change Property 2.
- All colorings obtainable from X using given operations satisfy Property 2.

Pointed Swaps

Pointed Swaps

- Off-Element Swaps

Pointed Swaps

- Off-Element Swaps

Pointed Swaps

- Off-Element Swaps

Pointed Swaps

Pointed Swaps

- On-Element Swaps

Pointed Swaps

- On-Element Swaps

Pointed Swaps

- On-Element Swaps

Pointed Swaps - matrix viewpoint

$\left[v_{1}, \ldots, v_{k}, \ldots, v_{r}\right] \xrightarrow{\psi_{\bar{w}}}\left[v_{1}+w, \ldots, v_{k}+w, \ldots, v_{r}+w\right]$.

- w : red element (Off-swap).

Pointed Swaps - matrix viewpoint

$$
\left[v_{1}, \ldots, v_{k}, \ldots, v_{r}\right] \xrightarrow{\psi_{w}^{-}}\left[v_{1}+w, \ldots, v_{k}+w, \ldots, v_{r}+w\right] .
$$

- w : red element (Off-swap).
$\left[v_{1}, \ldots, v_{k}, \ldots, v_{r}, w\right] \xrightarrow{\psi_{w}^{+}}\left[v_{1}+w, \ldots, v_{k}+w, \ldots, v_{r}+w, w\right]$.
- w : green element (On-swap).

Same element matroids obtainable via pointed swaps

Lemma
Let M be a t-element matroid that is a restriction of P_{r}. Then every t-element restriction of P_{r} can be obtained from M using pointed swaps.

Same element matroids obtainable via pointed swaps

Lemma

Let M be a t-element matroid that is a restriction of P_{r}. Then every t-element restriction of P_{r} can be obtained from M using pointed swaps.

Proof.

$$
\begin{aligned}
& {\left[v_{1}, \ldots, v_{k}, \ldots, v_{r}\right] \xrightarrow{\psi_{w}^{-}}\left[v_{1}+w, \ldots, v_{k}+w, \ldots, v_{r}+w\right] . } \\
& {\left[v_{1}+w, \ldots, v_{r}+w\right] \xrightarrow{\psi_{v_{k}+w}^{+}}\left[v_{1}+v_{k}, \ldots, v_{k}+w, \ldots, v_{r}+v_{k}\right] . } \\
& {\left[v_{1}+v_{k}, \ldots, v_{k}+w, \ldots, v_{r}+v_{k}\right] \xrightarrow{\psi_{v_{k}}^{-}}\left[v_{1}, \ldots, w, \ldots, v_{r}\right] . }
\end{aligned}
$$

All Matroids Obtainable

Theorem (Oxley, Singh; 2019)

For $r>1$, all binary matroids of rank at most r can be obtained from P_{r} via :
(1) Complementations inside projective hyperplanes
(2) Pointed Swaps

All Matroids Obtainable

Theorem (Oxley, Singh; 2019)

For $r>1$, all binary matroids of rank at most r can be obtained from P_{r} via :
(1) Complementations inside projective hyperplanes
(2) Pointed Swaps

First operation gives both Complementation and Switching.

All Matroids Obtainable

Theorem (Oxley, Singh; 2019)

For $r>1$, all binary matroids of rank at most r can be obtained from P_{r} via :
(1) Complementations inside projective hyperplanes
(2) Pointed Swaps

First operation gives both Complementation and Switching.
Proof.

$$
\text { - } P_{r} \xrightarrow{\text { Hyp.Comp. }} A_{r} \xrightarrow{\text { Ptd.Swaps }} P_{r-1} \oplus U_{1,1} \xrightarrow{\text { Hyp.Comp. }} U_{1,1} \text {. }
$$

All Matroids Obtainable

Theorem (Oxley, Singh; 2019)

For $r>1$, all binary matroids of rank at most r can be obtained from P_{r} via :
(1) Complementations inside projective hyperplanes
(2) Pointed Swaps

First operation gives both Complementation and Switching.

Proof.

- $P_{r} \xrightarrow{\text { Hyp.Comp. }} A_{r} \xrightarrow{\text { Ptd.Swaps }} P_{r-1} \oplus U_{1,1} \xrightarrow{\text { Hyp.Comp. }} U_{1,1}$.
- Minimal counterexample M has ≥ 2 elements.

Proof (continued)

- Decreased the size of M.

Don't need both on-swaps and off-swaps

- On-swaps and off-swaps are complementary.

Don't need both on-swaps and off-swaps

- On-swaps and off-swaps are complementary.
- Complementation inside hyperplanes and on-swaps are enough.

Local Complementation and Pointed Swaps

Theorem (Oxley, Singh; 2019)
 All binary matroids of rank at most r with ≥ 2 elements can be obtained from P_{r} using local complementation and pointed swaps.

- If M has 2 coloops, then we can get M^{\prime} with one more element using local complementation.
- If M has 2 coloops, then we can get M^{\prime} with one more element using local complementation.
- All matroids with size in $\left[2,2^{r-2}+2\right]$ are obtainable from $U_{2,2}$. Call them \mathbb{M}_{1}.
- If M has 2 coloops, then we can get M^{\prime} with one more element using local complementation.
- All matroids with size in [2, $2^{r-2}+2$] are obtainable from $U_{2,2}$. Call them \mathbb{M}_{1}.
- $P_{r} \xrightarrow{\text { L.C. }} A_{r}$. B be a basis inside A_{r}. Pick k - elements each of $A_{r}-B$ and $P_{r}-A_{r}$ and swap their colors.
- L.C. w.r.t $C^{*}=A_{r}$ gives a matroid with $\left(2^{r}-1\right)-2 k$ elements. Note $k \in\left[0,2^{r-1}-r\right]$.
- All matroids of odd size between $2^{r}-1$ and $2 r-1$ are obtainable from P_{r}. Call them \mathbb{M}_{2}.
- \mathbb{M}_{1} intersects \mathbb{M}_{2}.
- All matroids with odd size >1 are obtainable from P_{r}.
- Similar argument for even size.

Thank You for your attention!

