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All Graphs Obtainable

Complementation can be obtained via switchings and local
complementations.

Theorem
All n-vertex graphs can be obtained from Kn via a sequence of
switchings and local complementations.
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Matroid prerequisites


e1 e2 e3 e4 e5 e6 e7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


Consider above over GF (2).

{e1,e2,e3} is independent.
Matroids from matrices over GF (2) : Binary.
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Matroid prerequisites


e1 e2 e3 e4 e5 e6 e7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


Binary projective geometries Pr : Vector space over GF(2)
having all vectors except zero vector.

r (rank) : size of maximal independent set.
Above is P3.
All rank r binary matroids : Restrictions of Pr .
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Matroid prerequisites


e1 e2 e3 e4 e5 e6 e7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1


Cocircuit : Minimal set whose removal decrease the rank
by 1.

Columns having 1 as their first entry, {e1,e5,e6,e7}.
Columns having 1 as their second entry, {e2,e4,e6,e7}.
Closure of a set is the span.
cl({e1,e2}) = {e1,e2,e6}.
cl({e1,e2,e3}) = All points.

Hyperplane : Closed set of rank r − 1.

Also, complements of cocircuits.
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Main Idea

Want all binary matroids of rank at most r starting with Pr .
Operations:

Complementation
Switching
Local complementation

Jagdeep Singh∗, James Oxley Constructing Binary Matroids



Binary Matroid Analogues

Complementation (inside fixed projective geometry Pr )

U2,3 ⊕ U1,1
complementation inside P3−−−−−−−−−−−−−−−→ U3,3.

ω(U2,3 ⊕ U1,1) = U3,3.
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Binary Matroid Analogues

Complementation (inside fixed projective geometry Pr )

U1,1
complementation inside P3−−−−−−−−−−−−−−−→ M(K4).

ω(U1,1) = M(K4).
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Binary Matroid Analogues

Switching: Complement inside a cocircuit of Pr .

P(U2,3,U2,3)
switching−−−−−→ U3,3
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Composition of Switchings

σC∗
1
(M): matroid on E(M)4 C∗1 .

σC∗
1
σC∗

2
(M): matroid on E(M)4 C∗1 4 C∗2 .

σC∗
1
σC∗

2
(M) same as complementing in C∗1 4 C∗2 .

C∗1 4 C∗2 itself a cocircuit.
Composition of switchings is a switching.
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Observations about switching and complementation

Commute with each other.

Both have order two.
Composition of switchings is a switching.

Theorem
Matroids obtainable from Pr using switchings and
complementation are isomorphic to one of Pr , U0,0, Pr−1 and
Ar .
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Local Complementation
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Local Complementation

Edges incident with blue vertex v : Complete vertex bond
C∗ ∩G.

Yellow edges : clKn(C
∗ ∩ G)− C∗.

Binary Matroids : Complement inside clPr(C
∗ ∩ E(M))− C∗.
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Not all Binary Matroids are obtainable

Theorem (Oxley, Singh; 2019)

For r > 4, not all binary matroids of rank at most r can be
obtained from Pr using complementation, switching, and local
complementation.

For r ≤ 4, we can.
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Coloring Notation

Element e of Pr colored green : e is in E(M).
Colored red : Not in E(M).
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Proof

(Property 1) : For every two distinct projective cocircuits
C∗ and D∗, red and green elements in (C∗ −D∗) both have
rank r − 1.

(Property 2): For any projective C∗, both red and green
elements in C∗ have rank r . Implied by Property 1.

Lemma
For r > 4, there exists a 2-coloring X of Pr having Property 1.

Complementation: does not change the properties.
Switching: does not change Property 2.
Local Complementation :

Complement inside clPr(green elements of C∗)− C∗ , i.e, a
projective hyperplane.
Composition of switching and complementation.
does not change Property 2.
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Proof (continued)

All colorings obtainable from X using given operations
satisfy Property 2.
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Pointed Swaps

Off-Element Swaps
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Pointed Swaps - matrix viewpoint

[v1, . . . , vk , . . . , vr ]
ψ−

w−−→ [v1 + w , . . . , vk + w , . . . , vr + w ].

w : red element (Off-swap).

[v1, . . . , vk , . . . , vr ,w ]
ψ+

w−−→ [v1 + w , . . . , vk + w , . . . , vr + w ,w ].

w : green element (On-swap).
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w : green element (On-swap).

Jagdeep Singh∗, James Oxley Constructing Binary Matroids



Same element matroids obtainable via pointed swaps

Lemma
Let M be a t-element matroid that is a restriction of Pr . Then
every t-element restriction of Pr can be obtained from M using
pointed swaps.

Proof.

[v1, . . . , vk , . . . , vr ]
ψ−

w−−→ [v1 + w , . . . , vk + w , . . . , vr + w ].

[v1 + w , . . . , vr + w ]
ψ+

vk+w−−−−→ [v1 + vk , . . . , vk + w , . . . , vr + vk ].

[v1 + vk , . . . , vk + w , . . . , vr + vk ]
ψ−

vk−−→ [v1, . . . ,w , . . . , vr ].
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All Matroids Obtainable

Theorem (Oxley, Singh; 2019)

For r > 1, all binary matroids of rank at most r can be obtained
from Pr via :

1 Complementations inside projective hyperplanes
2 Pointed Swaps

First operation gives both Complementation and Switching.

Proof.

Pr
Hyp.Comp.−−−−−−→ Ar

Ptd .Swaps−−−−−−→ Pr−1 ⊕ U1,1
Hyp.Comp.−−−−−−→ U1,1.

Minimal counterexample M has ≥ 2 elements.
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Proof (continued)

C∗

x

y
z

Ptd .Swap−−−−−−→
x

y
z

Switch.C∗
−−−−−−→

x

y
z
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Proof (continued)
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Proof (continued)

x

y
z

Ptd .Swap−−−−−−→
x

y
z

Switch.C∗
−−−−−−→

x

y
z

Decreased the size of M.
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Proof (continued)
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x

y
z

Switch.C∗
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x

y
z
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Don’t need both on-swaps and off-swaps

On-swaps and off-swaps are complementary.

Complementation inside hyperplanes and on-swaps are
enough.
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Local Complementation and Pointed Swaps

Theorem (Oxley, Singh; 2019)

All binary matroids of rank at most r with ≥ 2 elements can be
obtained from Pr using local complementation and pointed
swaps.

Jagdeep Singh∗, James Oxley Constructing Binary Matroids



Proof (Sketch)

If M has 2 coloops, then we can get M ′ with one more
element using local complementation.

All matroids with size in [2,2r−2 + 2] are obtainable from
U2,2. Call them M1.

Pr
L.C.−−→ Ar . B be a basis inside Ar . Pick k− elements each

of Ar − B and Pr − Ar and swap their colors.
L.C. w.r.t C∗ = Ar gives a matroid with (2r − 1)− 2k
elements. Note k ∈ [0,2r−1 − r ].
All matroids of odd size between 2r − 1 and 2r − 1 are
obtainable from Pr . Call them M2.
M1 intersects M2.
All matroids with odd size > 1 are obtainable from Pr .
Similar argument for even size.
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Thank You for your attention!
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