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Incidence Matrix - Graph

v1 v2

v3v4

e1

e2

e3

e4
e5 HG =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 −1 1
1 −1 0 0 0
0 1 1 0 −1
0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● V × E matrix with values +1 if the edge enters a vertex and
−1 if it exits a vertex.

● Edge e1 exits v1 and enters v2
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v1 v2

v3v4

e1

e2

e3

e4
e5

HG =
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−1 0 0 −1 −1
1 1 0 0 0
0 1 −1 0 1
0 0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

● V × E matrix with values +1 if the incidence enters a vertex
and −1 if it exits a vertex.

● Edge e1 has both incidences oriented to agree with the
previous graph.

● Edge e2 has both incidences entering v2 and v3 (extroverted).
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Incidence Matrix - Oriented Hypergraph

v1

v2

v3

v4

e1 e2

e3e4

v5
HG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
0 1 −1 0
0 0 1 1
1 0 0 −1
1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

● V × E matrix with values +1 if the incidence enters a vertex
and −1 if it exits a vertex.

● Edge e3 has two compatible pairs and one extroverted pair of
incidences.

● No edge of size greater than 2 can have all incidence pairs
compatible.
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Adjacency Matrix

v1

v2

v3

v4

e1 e2

e3e4

v5
AG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 −1 −1
−1 0 +1 0 +1
0 +1 0 +1 −1
−1 0 +1 0 −1
−1 +1 −1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

● Entries are signed by local adjacencies.
(Introverted/Extroverted = negative)

● The sign of the circle from (v1, v2, v3, v4) is the product of the
adjacency signs.
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Sachs’ Theorem

Theorem (Sachs’ Theorem)

For a graph G the characteristic polynomial is

χG(A, x) =
∣V (G)∣

∑
k=1

⎛
⎝ ∑U∈Uk

(−1)p(U)(2)c(U)
⎞
⎠
xk .

Where Uk is the set of all cycle-covers avoiding k vertices.

● Each cycle-cover is weighted by −1 for each connected
component and 2 for each cycle.

● We obtain a generalization to oriented hypergraphs via the
finest possible sum.
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Laplacian Matrix

Definition

Laplacian Matrix: LG ∶= DG −AG = HGH
T
G

v1

v2

v3

v4

e1 e2

e3e4

v5
LG =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 1 1
1 2 −1 0 −1
0 −1 2 −1 1
1 0 −1 2 1
1 −1 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

● The degree of a vertex is the number of incidences at that
vertex.
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Graphic Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem)

If v is a vertex of a graph G with Laplacian matrix L(G) then

det (Lv(G)) = ∑
T

∏
e∈E(T)

wt(e)

Where the sum is over all spanning trees T , rooted at v , and
wt(e) is the weight of edge e.

● If each edge is weighted 1 this simply counts the number of
spanning trees of G .

● This is a specialization of Tutte’s k-arborescence theorem for
iterated minors.

● We obtain a generalization to oriented hypergraphs via the
finest possible sum.
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Signed-Graphic Matrix-Tree Theorem

Theorem (Chaiken’s All Minors Matrix-tree Theorem (Chaiken 1982))

Let G be a signed graph with Laplacian matrix L. For U,W ⊆ V
with ∣U ∣ = ∣W ∣, let LU,W be (U,W ) minor of L then

det (LU,W ) = ε(Ū,V )ε(W̄ ,V )∑
F

ε(π∗)(−1)np(F)4nc(F)aF

Where the sum is over all edge sets F , subset of E, such that

1 F contains ∣U ∣ components that are trees.

2 Each tree from 1 contains exactly one vertex from U and one vertex from W.

3 Each tree from 1 is rooted at its vertex in U and contains exactly one vertex of
W . This defines a linking π∗ ∶W → U. ε(π∗) is negative one to the number of
inversions of π∗, and np(F) is the number of negative paths in π∗.

4 Each of the remaining components of F contains exclusively a backstep or
exactly one negative circle. nc(F) is the number of negative circles.

5 ε(Ū,V ) = (−1)∣{(i,j)∣i<j,i∈U,j∈Ū}∣
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Weak Walks and Path Embeddings

Definition

A directed weak walk of G is the image of an incidence-preserving
map of a directed path into G .

Definition

A directed adjacency of G is a map of
Ð→
P 1 into G that is

incidence-monic.

Definition

A backstep of G is a non-incidence-monic map of
Ð→
P 1 into G .
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A Unifying Theorem - Weak Walk Theorem

Theorem (Reff & Rusnak, 2012)

The ij-entry of the oriented hypergraphic adjacency matrix is the
number of walks of length 1 from vi to vj .

Theorem (Reff & Rusnak, 2012)

The ij-entry of the oriented hypergraphic Laplacian matrix is the
number of weak walks of length 1 from vi to vj .

● Backsteps correspond to degree.

● The only difference between A and L is incidence-monic-ness.
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Contributors as Permutation Clones

Definition (Contributor)

A contributor of G is an incidence preserving map from a disjoint

union of
Ð→
P 1’s into G defined by c ∶ ∐

v∈V

Ð→
P 1 → G such that

c(tv) = v and {c(hv) ∣ v ∈ V } = V .

● A strong contributor is a contributor with no backsteps.
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Contributors of K3 versus E3

i3

v1

v2v3

e3 e1

e2

G1

v2

e1

G2

i2

i4

i6

i5

i1
i1

i2i3

v1

v3

● Both have two strong contributors. (Sachs-figures)

● K3 has 8 identity clones. Hence, 8 activation classes.
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Contributor Sets

Definition

Let C(G ;u,w) be the set of contributors in G where c(ui) = wi .

Definition

Let Ĉ(G ;u,w) be the set obtained by removing the u→ w
mappings from C(G ;u,w)

● S(G ;u,w) and Ŝ(G ;u,w) will be used to denote the set of
strong contributors.
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Definition

Given an incidence hypergraph G , define the loading of G as the
incidence hypergraph L(G) that contains G and has an incidence
for every (v , e) pair that was incidence-free.

→

L(G)

v1

v2v3

e3

v1

v2v3

e2

v1

v2v3

e1

v1

v2v3

e3 e1

e2

G

Lemma (Grilliette, R., Rusnak; submitted)

The loading of G is the injective envelope in the category of
incidence hypergraphs.
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Characteristic Polynomial

v2

v1

v3

e1
e3

e2

● det(xI − L) = x3 − 6x2 + 9x . The constant is 0 as contributors
are cancellative within each activation class.

● perm(xI −A) = x3 + 3x − 2. The constant is −2 as there are
two strong contributors that have been decoupled from their
identity.
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Expanding to All-minors

v2

v1

v3

e1
e3

e2

perm(X −A) = perm

⎡⎢⎢⎢⎢⎢⎣

x11 x12 − 1 x13 − 1
x21 − 1 x22 x23 − 1
x31 − 1 x32 − 1 x33

⎤⎥⎥⎥⎥⎥⎦
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x12x23x31

x12x23 x12x31 x23x31

x23 x31 x12

11

x32 x13 x21

x32x21 x13x21 x13x32

x13x32x21

v1

v2v3

e1

e2

e3

● The constant term will still be produced by the two 3-cycle
strong contributors.

● The subcontributors also contribute additional monomials
shown.

● perm(X −A) is the alternating sum of these monomials.
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χD(LG ,x)

= det (X − LG) = det

⎡⎢⎢⎢⎢⎢⎣

x11 − 1 x12 − 1 x13 + 1
x21 − 1 x22 − 1 x23 + 1
x31 + 1 x32 + 1 x33 − 1

⎤⎥⎥⎥⎥⎥⎦
= x11x22x33 − x11x23x32 − x13x22x31 − x12x21x33 + x12x23x31 + x13x21x32

− x11x22 − x11x23 − x11x32 − x11x33 − x13x22 − x22x31 − x22x33 − x23x31 − x13x32

+ x12x21 + x13x21 + x12x23 + x12x31 + x13x31 + x21x32 + x23x32 + x12x33 + x12x33

Note the constant and linear terms all have coefficient zero.
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Theorem (Grilliette, R., Rusnak; submitted)

Let G be an oriented hypergraph with adjacency matrix AG and Laplacian
matrix LG , then

1 χP(AG ,x) = ∑
[u,w]

⎛
⎜⎜⎜
⎝

∑
s∈Ŝ(L0

(G);u,w)

sgn(s)≠0

(−1)oc(s)+nc(s)
⎞
⎟⎟⎟
⎠
∏
i
xui ,wi

,

2 χD(AG ,x) = ∑
[u,w]

⎛
⎜⎜⎜
⎝

∑
s∈Ŝ(L0

(G);u,w)

sgn(s)≠0

(−1)ec(š)+oc(s)+nc(s)
⎞
⎟⎟⎟
⎠
∏
i
xui ,wi

,

3 χP(LG ,x) = ∑
[u,w]

⎛
⎜⎜⎜
⎝

∑
c∈Ĉ(L0

(G);u,w)

sgn(c)≠0

(−1)nc(c)+bs(c)
⎞
⎟⎟⎟
⎠
∏
i
xui ,wi

,

4 χD(LG ,x) = ∑
[u,w]

⎛
⎜⎜⎜
⎝

∑
c∈Ĉ(L0

(G);u,w)

sgn(c)≠0

(−1)ec(č)+nc(c)+bs(c)
⎞
⎟⎟⎟
⎠
∏
i
xui ,wi

.
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Arborescenes

Definition

Let A(u;w;G) denote the (u,w)-equivalent elements in activation
class A.

Definition

Let Â(u;w;G) be the elements of A(u;w;G) with the adjacency
or backstep from ui to wi is removed for each i .
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v2

v1

v3

e1
e3

e2

(1,1)-contributors of G

v1

v2v3

e1
e3

e2

Contributor with x11

● For each activation class take only those contributors where
1→ 1.
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v1

v2v3

e1
e3

e2

−1 −1

+1 +1

+1+1 +1

χD(LG , x11) = 3x11

● Non-single-element activation classes are still cancellative.

● The single-element activation classes are unpacking-equivalent
to spanning trees.
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Arborescenes

The three [(1,2), (2,3)]-equivalent contributors, their reduced
subcontributor in G with linking, and the unpacked inward
arborescence rooted at v1.
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● The coefficient of x12x23 in χD(LG ,x) is −3.

● The coefficient of x12x23 in χP(LG ,x) is −1.
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Arborescenes

Theorem (Grilliette, R., Rusnak; submitted)

In a bidirected graph G the set of all elements in single-element
Â≠0(u;w;L(G)) is unpacking equivalent to k-arborescences.
Moreover, the i th component in the arborescence has sink ui , and
the vertices of each component are determined by the linking
induced by c−1 between all ui ∈ U ∩W → U or unpack into a
vertex of a linking component.
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