The Integer Matrix All-minors Matrix-tree Theorem via Oriented Hypergraphs

Josephine Reynes
7th Annual Mississippi Discrete Math Workshop

October 26, 2019

Introduction

Introduction

Incidence Matrix - Graph

- $V \times E$ matrix with values +1 if the edge enters a vertex and -1 if it exits a vertex.

Incidence Matrix - Graph

$$
\mathrm{H}_{G}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & -1 & 1 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the edge enters a vertex and -1 if it exits a vertex.
- Edge e_{1} exits v_{1} and enters v_{2}

Incidence Matrix - Signed Graph

$$
H_{G}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.

Incidence Matrix - Signed Graph

$$
\mathrm{H}_{G}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.
- Edge e_{1} has both incidences oriented to agree with the previous graph.

Incidence Matrix - Signed Graph

$$
\mathrm{H}_{G}=\left[\begin{array}{ccccc}
-1 & 0 & 0 & -1 & -1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.
- Edge e_{1} has both incidences oriented to agree with the previous graph.
- Edge e_{2} has both incidences entering v_{2} and v_{3} (extroverted).

Incidence Matrix - Oriented Hypergraph

$$
\mathrm{H}_{G}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.

Incidence Matrix - Oriented Hypergraph

$$
\mathrm{H}_{G}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.
- Edge e_{3} has two compatible pairs and one extroverted pair of incidences.

Incidence Matrix - Oriented Hypergraph

$$
H_{G}=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & -1 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

- $V \times E$ matrix with values +1 if the incidence enters a vertex and -1 if it exits a vertex.
- Edge e_{3} has two compatible pairs and one extroverted pair of incidences.
- No edge of size greater than 2 can have all incidence pairs compatible.

Adjacency Matrix

$$
A_{G}=\left[\begin{array}{ccccc}
0 & -1 & 0 & -1 & -1 \\
-1 & 0 & +\mathbf{1} & 0 & +1 \\
0 & +1 & 0 & +1 & -1 \\
-\mathbf{1} & 0 & +1 & 0 & -1 \\
-1 & +1 & -1 & -1 & 0
\end{array}\right]
$$

- Entries are signed by local adjacencies. (Introverted/Extroverted $=$ negative)

Adjacency Matrix

$$
A_{G}=\left[\begin{array}{ccccc}
0 & -1 & 0 & -1 & -1 \\
-1 & 0 & +\mathbf{1} & 0 & +1 \\
0 & +1 & 0 & +1 & -1 \\
-\mathbf{1} & 0 & +1 & 0 & -1 \\
-1 & +1 & -1 & -1 & 0
\end{array}\right]
$$

- Entries are signed by local adjacencies. (Introverted/Extroverted $=$ negative)
- The sign of the circle from $\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is the product of the adjacency signs.

Sachs' Theorem

Theorem (Sachs' Theorem)

For a graph G the characteristic polynomial is

$$
\chi_{G}(\mathbf{A}, x)=\sum_{k=1}^{|V(G)|}\left(\sum_{U \in \mathscr{U}_{k}}(-1)^{p(U)}(2)^{c(U)}\right) x^{k} .
$$

Where \mathscr{U}_{k} is the set of all cycle-covers avoiding k vertices.

- Each cycle-cover is weighted by -1 for each connected component and 2 for each cycle.

Sachs' Theorem

Theorem (Sachs' Theorem)

For a graph G the characteristic polynomial is

$$
\chi_{G}(\mathbf{A}, x)=\sum_{k=1}^{|V(G)|}\left(\sum_{U \in \mathscr{U}_{k}}(-1)^{p(U)}(2)^{c(U)}\right) x^{k} .
$$

Where \mathscr{U}_{k} is the set of all cycle-covers avoiding k vertices.

- Each cycle-cover is weighted by -1 for each connected component and 2 for each cycle.
- We obtain a generalization to oriented hypergraphs via the finest possible sum.

Laplacian Matrix

Definition

Laplacian Matrix: $L_{G}:=D_{G}-A_{G}=H_{G} H_{G}^{T}$

$$
L_{G}=\left[\begin{array}{ccccc}
2 & 1 & 0 & 1 & 1 \\
1 & 2 & -1 & 0 & -1 \\
0 & -1 & 2 & -1 & 1 \\
1 & 0 & -1 & 2 & 1 \\
1 & -1 & 1 & 1 & 2
\end{array}\right]
$$

- The degree of a vertex is the number of incidences at that vertex.

Graphic Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem)

If v is a vertex of a graph G with Laplacian matrix $\mathbf{L}(G)$ then

$$
\operatorname{det}\left(\mathbf{L}_{v}(G)\right)=\sum_{T} \prod_{e \in E(T)} w t(e)
$$

Where the sum is over all spanning trees T, rooted at v, and $w t(e)$ is the weight of edge e.

- If each edge is weighted 1 this simply counts the number of spanning trees of G.

Graphic Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem)

If v is a vertex of a graph G with Laplacian matrix $\mathbf{L}(G)$ then

$$
\operatorname{det}\left(\mathbf{L}_{v}(G)\right)=\sum_{T} \prod_{e \in E(T)} w t(e)
$$

Where the sum is over all spanning trees T, rooted at v, and $w t(e)$ is the weight of edge e.

- If each edge is weighted 1 this simply counts the number of spanning trees of G.
- This is a specialization of Tutte's k-arborescence theorem for iterated minors.

Graphic Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem)

If v is a vertex of a graph G with Laplacian matrix $\mathbf{L}(G)$ then

$$
\operatorname{det}\left(\mathbf{L}_{v}(G)\right)=\sum_{T} \prod_{e \in E(T)} w t(e)
$$

Where the sum is over all spanning trees T, rooted at v, and $w t(e)$ is the weight of edge e.

- If each edge is weighted 1 this simply counts the number of spanning trees of G.
- This is a specialization of Tutte's k-arborescence theorem for iterated minors.
- We obtain a generalization to oriented hypergraphs via the finest possible sum.

Signed-Graphic Matrix-Tree Theorem

Theorem (Chaiken's All Minors Matrix-tree Theorem (Chaiken 1982))

Let G be a signed graph with Laplacian matrix \mathbf{L}. For $U, W \subseteq V$ with $|U|=|W|$, let $\mathbf{L}_{U, W}$ be (U, W) minor of \mathbf{L} then $\operatorname{det}\left(\mathbf{L}_{U, W}\right)=\epsilon(\bar{U}, V) \epsilon(\bar{W}, V) \sum_{F} \epsilon\left(\pi^{*}\right)(-1)^{n p(F)} 4^{n c(F)} a_{F}$

Where the sum is over all edge sets F, subset of E, such that
(1) F contains $|U|$ components that are trees.
(2) Each tree from 1 contains exactly one vertex from U and one vertex from W.
(3) Each tree from 1 is rooted at its vertex in U and contains exactly one vertex of W. This defines a linking $\pi^{*}: W \rightarrow U . \epsilon\left(\pi^{*}\right)$ is negative one to the number of inversions of π^{*}, and $n p(F)$ is the number of negative paths in π^{*}.
(4) Each of the remaining components of F contains exclusively a backstep or exactly one negative circle. $n c(F)$ is the number of negative circles.
(5) $\epsilon(\bar{U}, V)=(-1)^{|\{(i, j) \mid i<j, i \in U, j \in \bar{U}\}|}$

Motivation and Examples

Weak Walks and Path Embeddings

Definition

A directed weak walk of G is the image of an incidence-preserving map of a directed path into G.

Definition

A directed adjacency of G is a map of \vec{P}_{1} into G that is incidence-monic.

Definition

A backstep of G is a non-incidence-monic map of \vec{P}_{1} into G.

A Unifying Theorem - Weak Walk Theorem

Theorem (Reff \& Rusnak, 2012)

The ij-entry of the oriented hypergraphic adjacency matrix is the number of walks of length 1 from v_{i} to v_{j}.

Theorem (Reff \& Rusnak, 2012)

The ij-entry of the oriented hypergraphic Laplacian matrix is the number of weak walks of length 1 from v_{i} to v_{j}.

- Backsteps correspond to degree.

A Unifying Theorem - Weak Walk Theorem

Theorem (Reff \& Rusnak, 2012)

The ij-entry of the oriented hypergraphic adjacency matrix is the number of walks of length 1 from v_{i} to v_{j}.

Theorem (Reff \& Rusnak, 2012)

The ij-entry of the oriented hypergraphic Laplacian matrix is the number of weak walks of length 1 from v_{i} to v_{j}.

- Backsteps correspond to degree.
- The only difference between \mathbf{A} and \mathbf{L} is incidence-monic-ness.

Contributors as Permutation Clones

Definition (Contributor)

A contributor of G is an incidence preserving map from a disjoint union of \vec{P}_{1} 's into G defined by $c: \coprod_{v \in V} \vec{P}_{1} \rightarrow G$ such that $c\left(t_{v}\right)=v$ and $\left\{c\left(h_{v}\right) \mid v \in V\right\}=V$.

- A strong contributor is a contributor with no backsteps.

Contributors of K_{3} versus E_{3}

- Both have two strong contributors. (Sachs-figures)

Contributors of K_{3} versus E_{3}

- Both have two strong contributors. (Sachs-figures)
- K_{3} has 8 identity clones. Hence, 8 activation classes.

Contributor Sets

Definition

Let $\mathcal{C}(G ; \mathbf{u}, \mathbf{w})$ be the set of contributors in G where $c\left(u_{i}\right)=w_{i}$.

Definition

Let $\widehat{\mathcal{C}}(G ; \mathbf{u}, \mathbf{w})$ be the set obtained by removing the $\mathbf{u} \rightarrow \mathbf{w}$ mappings from $\mathcal{C}(G ; \mathbf{u}, \mathbf{w})$

- $\mathcal{S}(G ; \mathbf{u}, \mathbf{w})$ and $\widehat{\mathcal{S}}(G ; \mathbf{u}, \mathbf{w})$ will be used to denote the set of strong contributors.

Definition

Given an incidence hypergraph G, define the loading of G as the incidence hypergraph $L(G)$ that contains G and has an incidence for every (v, e) pair that was incidence-free.

Lemma (Grilliette, R., Rusnak; submitted)

The loading of G is the injective envelope in the category of incidence hypergraphs.

Characteristic Polynomial

Characteristic Polynomial

- $\operatorname{det}(x \mathbf{I}-\mathbf{L})=x^{3}-6 x^{2}+9 x$. The constant is 0 as contributors are cancellative within each activation class.

Characteristic Polynomial

- $\operatorname{det}(x \mathbf{I}-\mathbf{L})=x^{3}-6 x^{2}+9 x$. The constant is 0 as contributors are cancellative within each activation class.
- $\operatorname{perm}(x \mathbf{I}-\mathbf{A})=x^{3}+3 x-2$. The constant is -2 as there are two strong contributors that have been decoupled from their identity.

Expanding to All-minors

$$
\operatorname{perm}(\mathbf{X}-\mathbf{A})=\operatorname{perm}\left[\begin{array}{ccc}
x_{11} & x_{12}-1 & x_{13}-1 \\
x_{21}-1 & x_{22} & x_{23}-1 \\
x_{31}-1 & x_{32}-1 & x_{33}
\end{array}\right]
$$

Introduction

Moving in Hypergraphs
Permutation Cloning
Examples

- The constant term will still be produced by the two 3-cycle strong contributors.

- The constant term will still be produced by the two 3-cycle strong contributors.
- The subcontributors also contribute additional monomials shown.

- The constant term will still be produced by the two 3-cycle strong contributors.
- The subcontributors also contribute additional monomials shown.
- $\operatorname{perm}(\mathbf{X}-\mathbf{A})$ is the alternating sum of these monomials.

$=\operatorname{det}\left(\mathbf{X}-\mathbf{L}_{G}\right)=\operatorname{det}\left[\begin{array}{lll}x_{11}-1 & x_{12}-1 & x_{13}+1 \\ x_{21}-1 & x_{22}-1 & x_{23}+1 \\ x_{31}+1 & x_{32}+1 & x_{33}-1\end{array}\right]$
$=x_{11} x_{22} x_{33}-x_{11} x_{23} x_{32}-x_{13} x_{22} x_{31}-x_{12} x_{21} x_{33}+x_{12} x_{23} x_{31}+x_{13} x_{21} x_{32}$
$-x_{11} x_{22}-x_{11} x_{23}-x_{11} x_{32}-x_{11} x_{33}-x_{13} x_{22}-x_{22} x_{31}-x_{22} x_{33}-x_{23} x_{31}-x_{13} x_{32}$
$+x_{12} x_{21}+x_{13} x_{21}+x_{12} x_{23}+x_{12} x_{31}+x_{13} x_{31}+x_{21} x_{32}+x_{23} x_{32}+x_{12} x_{33}+x_{12} x_{33}$
Note the constant and linear terms all have coefficient zero.

Main Theorems

Theorem (Grilliette, R., Rusnak; submitted)

Let G be an oriented hypergraph with adjacency matrix \mathbf{A}_{G} and Laplacian matrix \mathbf{L}_{G}, then
(1) $\chi^{P}\left(\mathbf{A}_{G}, \mathbf{x}\right)=\sum_{[\mathbf{u}, \mathbf{w}]}\left(\sum_{\substack{s \in \widehat{\mathcal{S}}\left(L^{0}(G) ; \mathbf{u}, \mathbf{w}\right) \\ \operatorname{sgn}(s) \neq 0}}(-1)^{o c(s)+n c(s)}\right) \prod_{i} x_{u_{i}, w_{i}}$,
(2) $\chi^{D}\left(\mathbf{A}_{G}, \mathbf{x}\right)=\sum_{[\mathbf{u}, \mathbf{w}]}\left(\sum_{\substack{s \in \widehat{\mathcal{S}}\left(L^{0}(G) ; \mathbf{u}, \mathbf{w}\right) \\ \mathrm{sgn}(s) \neq 0}}(-1)^{e c(\breve{s})+o c(s)+n c(s)}\right) \prod_{i} x_{u_{i}, w_{i}}$,

3 $\chi^{P}\left(\mathbf{L}_{G}, \mathbf{x}\right)=\sum_{[\mathbf{u}, \mathbf{w}]}\left(\sum_{\substack{c \in \widetilde{\mathcal{C}}\left(L^{\circ}(G) ; \mathbf{u}, \mathbf{w}\right) \\ \operatorname{sgn}(c) \neq 0}}(-1)^{n c(c)+b s(c)}\right) \prod_{i} x_{u_{i}, w_{i}}$,
(4) $\chi^{D}\left(\mathbf{L}_{G}, \mathbf{x}\right)=\sum_{[\mathbf{u}, \mathbf{w}]}\left(\sum_{\substack{c \in \widetilde{\mathcal{C}}\left(L^{\circ}(G) ; \mathbf{u}, \mathbf{w}\right) \\ \operatorname{sgn}(c) \neq 0}}(-1)^{e c(\check{c})+n c(c)+b s(c)}\right) \prod_{i} x_{u_{i}, w_{i}}$.

Arborescenes

Definition

Let $\mathcal{A}(\mathbf{u} ; \mathbf{w} ; G)$ denote the (\mathbf{u}, \mathbf{w})-equivalent elements in activation class \mathcal{A}.

Definition

Let $\hat{\mathcal{A}}(\mathbf{u} ; \mathbf{w} ; G)$ be the elements of $\mathcal{A}(\mathbf{u} ; \mathbf{w} ; G)$ with the adjacency or backstep from u_{i} to w_{i} is removed for each i.

$(1,1)$-contributors of G

Contributor with x_{11}

- For each activation class take only those contributors where $1 \rightarrow 1$.

Introduction

- Non-single-element activation classes are still cancellative.

- Non-single-element activation classes are still cancellative.
- The single-element activation classes are unpacking-equivalent to spanning trees.

Arborescenes

The three $[(1,2),(2,3)]$-equivalent contributors, their reduced subcontributor in G with linking, and the unpacked inward arborescence rooted at v_{1}.

Arborescenes

The three $[(1,2),(2,3)]$-equivalent contributors, their reduced subcontributor in G with linking, and the unpacked inward arborescence rooted at v_{1}.

- The coefficient of $x_{12} x_{23}$ in $\chi^{D}\left(\mathbf{L}_{G}, \mathbf{x}\right)$ is -3 .

Arborescenes

The three $[(1,2),(2,3)]$-equivalent contributors, their reduced subcontributor in G with linking, and the unpacked inward arborescence rooted at v_{1}.

- The coefficient of $x_{12} x_{23}$ in $\chi^{D}\left(\mathbf{L}_{G}, \mathbf{x}\right)$ is -3 .
- The coefficient of $x_{12} x_{23}$ in $\chi^{P}\left(\mathbf{L}_{G}, \mathbf{x}\right)$ is -1 .

Arborescenes

Theorem (Grilliette, R., Rusnak; submitted)

In a bidirected graph G the set of all elements in single-element $\hat{\mathcal{A}}_{\neq 0}(\mathbf{u} ; \mathbf{w} ; L(G))$ is unpacking equivalent to k-arborescences. Moreover, the $i^{\text {th }}$ component in the arborescence has sink u_{i}, and the vertices of each component are determined by the linking induced by c^{-1} between all $u_{i} \in U \cap \bar{W} \rightarrow \bar{U}$ or unpack into a vertex of a linking component.

Thanks

