Topological Properties of Maximal Linklessly Embeddable Graphs

Andrei Bogdan Pavelescu Joint Work with
Ramin Naimi, Occidental College
Elena Pavelescu, University of South Alabama

7th Annual Mississippi Discrete Math Workshop
October 26th 2019

- $K_{n}=$ the complete graph with n vertices.
- $c G=$ the complement of G in K_{n}.
- $V(c G)=V(G), E(c G)=\{\{i, j\} \mid\{i, j\} \notin E(G)\}$.

Figure: Complementary graphs

- For a graph G, a minor of G is any graph that can be obtained from G by a sequence of vertex deletions, edge deletions, and simple edge contractions.

Contracting edges produces subgraphs in the complement.

- (N. Robertson and P. Seymour, '83-'04) Every class of graphs closed under taking minors can be defined by a finite set of forbidden minors.
- A graph is a linear forest (disjoint union of paths) if and only if it does not have either of K_{3} or $K_{1,3}$ as a minor.

- A graph is outerplanar if and only if it does not have either of K_{4} or $K_{2,3}$ as a minor.

- (K. Wagner, 1937) A graph is planar if and only if it does not have either of K_{5} or $K_{3,3}$ as a minor.

- (V. Sivaraman, 2017) A graph does not have either of K_{6} or $K_{4,3}$ as a minor if and only if ...?(R. Nikkuni, Y. Tsutsumi 2012?)

- (J. Battle, F. Harary, Y. Kodama 1962) Every planar graph with nine points has a non planar complement.

Figure: Self-complementary graphs on 8 vertices.

Figure: The Fritsch Graph.

- Every maximal planar graph of order n has exactly $3 n-6$ edges.
- (Tutte, 1960) Every maximal planar graph is 3-connected.
- (Faŕy, 1948) Every planar 3-connected graph has a straight-edge planar embedding.
- A graph is called intrinsically linked (IL) if every one of its embeddings into \mathbb{R}^{3} contains a nontrivial link. A graph that is not intrinsically linked is called linklessly embeddable (nIL).
- (Sachs 1983) Does every nIL graph admit a straight-edge linkless embedding into \mathbb{R}^{3} ?
- (N. Robertson, P. Seymour, R. Thomas, 1993) A graph is nIL if and only if it does not have any of the Petersen family of graphs as a minor.

- What is the minimal value of n such that any graph nIL graph of order n has an IL complement?
- (Mader 1968) Any graph on n vertices and at least $4 n-9$ edges contains a K_{6} minor.
- $n(n-1) / 2 \geq 2(4 n-9) \Rightarrow n^{2}-17 n+36 \geq 0 \Rightarrow n \geq 15$.

(b)

Y.C. de Verdière, 1987

Let $\mathbb{R}^{(n)}$ denote the space of real symmetric $n \times n$ matrices. If $G=(V, E)$ is a graph of order n, then $\mu(G)$ is the largest corank of any matrix $M=\left(M_{i, j}\right) \in \mathbb{R}^{(n)}$ such that:

- for all i, j with $i \neq j, M_{i, j}<0$ if i and j are adjacent, and $M_{i, j}=0$ if i and j are not adjacent;
- M has exactly one negative eigenvalue, of multiplicity 1 ;
- There is no nonzero matrix $X \in \mathbb{R}^{(n)}$ such that $M X=0$ and such that $X_{i, j}=0$ whenever $i=j$ or $M_{i, j} \neq 0$.
- If H is a minor of G, then $\mu(H) \leq \mu(G)$;
- $\mu(G) \leq 1$ if and only if G is a disjoint union of paths;
- $\mu(G) \leq 2$ if and only if G is outer planar;
- $\mu(G) \leq 3$ if and only if G is planar;
- $\mu(G) \leq 4$ if and only if G is nIL;
- $\mu(G) \leq 5$ if and only if G is ?;
- $\mu(G) \leq \mu(G-v)+1, \forall v \in V(G)$;

- If G is a disjoint union of paths, then $\mu(c G) \geq n-3$;
- If G is outer planar, then $\mu(c G) \geq n-4$;
- If G is planar, then $\mu(c G) \geq n-5$;
- If G is nIL, then $\mu(c G) \geq \ldots$?
- (A. Kotlov, L. Lovász, S. Vempala, 1996) $\mu(G)+\mu(c G) \geq n-2$.

Theorem (A. Pavelescu, E. Pavelescu, 2019)
 Let G denote a simple graph with 13 vertices. Then either G or c G is intrinsically linked.

Theorem (A. Pavelescu, E. Pavelescu, 2019)

Let G denote a simple graph with 13 vertices. Then either G or cG is intrinsically linked.

Conjecture

Let G denote a simple graph with 11 vertices. Then either G or cG is intrinsically linked.

Definition

A simple graph is called triangular if every edge is part of a triangle.

Theorem (R. Naimi, A. Pavelescu, E. Pavelescu, 2019)

The following statements are equivalent:

- Every maximal linklessly embeddable (maxnil) graph has minimum degree 3.
- Every maximal linklessly embeddable graph is 3-connected.
- Every maximal linklessly embeddable graph is triangular.

Let G be maxnil graph of order n. Then $4 n-10 \geq|E(G)| \geq$?

Figure: The Maxnils on 7 Vertices.

Figure: Jørgensen's Graph

Jørgensen's graph is maxnil, has order 8, and has $4 \times 8-11=21$ edges.

Figure: Jørgensen's Graph + subdivision.

The new graph has order 9 and 24 edges.

Figure: Jørgensen's Graph + subdivision.

The new graph has order 9 and 24 edges.
Notice that $24=3 \times 9-3$. Is the lower bound $3 n-3$?

This graph is maxnil, it has order 10, and it has 25 edges.

This graph is maxnil, it has order 10, and it has 25 edges.

Conjecture

Let G be a linklessly embeddable graph of order n. Then $|E(G)| \geq 3 n-5$.

Abdee, abdee, abdee, that's all folks!

