On weighted modulo orientation of graphs

Jianbing Liu

Department of Mathematics, West Virginia University
(Joint work with Ping Li, Miaomiao Han, Jiaao Li and Hong-Jian Lai)
7th annual Mississippi Discrete Math Workshop

- $G=(V, E)$ is a graph.
- D: Orientation of G.
- $E_{D}^{+}(v)$: the set of all arcs directed out from v.
- $E_{D}^{-}(v)$: the set of all arcs directed into v.
- $G=(V, E)$ is a graph.
- D : Orientation of G.
- $E_{D}^{+}(v)$: the set of all arcs directed out from v.
- $E_{D}^{-}(v)$: the set of all arcs directed into v.
- Nowhere-zero k-flow: the pair (D, f) with $f: E(G) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm(k-1)\}$ such that, for each vertex v,

$$
\sum_{e \in E_{D}^{+}(v)} f(e)=\sum_{e \in E_{D}^{-}(v)} f(e)
$$

Nowhere zero 3-flow

Tutte initiated the integer flow theory in order to attack face-coloring problem (Four Color Conjecture). Tutte proposed nowhere-zero flow conjectures in the following.

Tutte initiated the integer flow theory in order to attack face-coloring problem (Four Color Conjecture). Tutte proposed nowhere-zero flow conjectures in the following.

3-Flow Conjecture, 1972

Every 4-edge-connected graph admits a Nowhere-zero 3-flow.

4-Flow Conjecture, 1966

Every bridgeless graph without Peterson-minor admits a Nowhere-zero 4-flow.

5-Flow Conjecture, 1954

Every bridgeless graph admits a Nowhere-zero 5-flow.

- the out-degree of $v: d_{D}^{+}(v)=\left|E_{D}^{+}(v)\right|$
- the in-degree of $v: d_{D}^{-}(v)=\left|E_{D}^{-}(v)\right|$
- Modulo k-orientation D : there is an orientation D such that, for each vertex v,

$$
d_{D}^{+}(v) \equiv d_{D}^{-}(v) \quad(\bmod k)
$$

- the out-degree of $v: d_{D}^{+}(v)=\left|E_{D}^{+}(v)\right|$
- the in-degree of $v: d_{D}^{-}(v)=\left|E_{D}^{-}(v)\right|$
- Modulo k-orientation D : there is an orientation D such that, for each vertex v,

$$
d_{D}^{+}(v) \equiv d_{D}^{-}(v) \quad(\bmod k)
$$

Figure: Modulo 3-orientation

Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

[^0]Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

- $(f, b ; k)$-orientation: Given any $f: E(G) \rightarrow \mathbb{Z}_{k}-\{0\}$ and any $b: V(G) \rightarrow \mathbb{Z}_{k}$ with $\sum b(v) \equiv 0(\bmod k)$, there exists D such that for each vertex v :

[^1]Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

- $(f, b ; k)$-orientation: Given any $f: E(G) \rightarrow \mathbb{Z}_{k}-\{0\}$ and any $b: V(G) \rightarrow \mathbb{Z}_{k}$ with $\sum b(v) \equiv 0(\bmod k)$, there exists D such that for each vertex v :

$$
\sum_{e \in E_{D}^{+}(v)} f(e)
$$

[^2]Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

- $(f, b ; k)$-orientation: Given any $f: E(G) \rightarrow \mathbb{Z}_{k}-\{0\}$ and any $b: V(G) \rightarrow \mathbb{Z}_{k}$ with $\sum b(v) \equiv 0(\bmod k)$, there exists D such that for each vertex v :

$$
\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e)
$$

${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

- $(f, b ; k)$-orientation: Given any $f: E(G) \rightarrow \mathbb{Z}_{k}-\{0\}$ and any $b: V(G) \rightarrow \mathbb{Z}_{k}$ with $\sum b(v) \equiv 0(\bmod k)$, there exists D such that for each vertex v :

$$
\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e) \equiv b(v) \quad(\bmod k)
$$

[^3] Discrete Math., 32(1)(2018), 534-542.

Esperet, De Verclos et al. [1] defined a modulo $k f$-weighted b-orientation of a graph G.

- $(f, b ; k)$-orientation: Given any $f: E(G) \rightarrow \mathbb{Z}_{k}-\{0\}$ and any $b: V(G) \rightarrow \mathbb{Z}_{k}$ with $\sum b(v) \equiv 0(\bmod k)$, there exists D such that for each vertex v :

$$
\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e) \equiv b(v) \quad(\bmod k)
$$

- $(f, b ; k)$-orientation \Rightarrow Modulo k-orientation.

[^4]
Esperet et al indicated that k is assumed to be a prime:

Figure: No ($f, b ; 6$)-orientation for large edge connectivity.

[^5]Esperet et al indicated that k is assumed to be a prime:

Figure: No $(f, b ; 6)$-orientation for large edge connectivity.

Theorem (Esperet, De Verclos, Le and Thomassé, [1])

Let $p \geq 3$ be a prime number and $\kappa^{\prime}(G) \geq\left(6 p^{2}-14 p+8\right)$. Then G has an $(f, b ; p)$-orientation.

[^6]$\mathcal{O}_{p}=\{G: G$ is a connected graph and G admits an $(f, b ; p)$-orientation $\}$.

Lemma ([2],2019+)

Let G be a connected graph. Then each of following holds.
(i) $K_{1} \in \mathcal{O}_{p}$.
(ii) If $G \in \mathcal{O}_{p}$ and $e \in E(G)$, then $G / e \in \mathcal{O}_{p}$.
(iii) If $H \subseteq G$ satisfying $H \in \mathcal{O}_{p}$ and $G / H \in \mathcal{O}_{p}$, then $G \in \mathcal{O}_{p}$.
(iv) Every graph in \mathcal{O}_{p} contains $(p-1)$ edge-disjoint spanning trees.
(v) $m K_{2} \in \mathcal{O}_{p}$ if and only if $m \geq p-1$.
(vi) Let $G=C_{n}\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. If for each $j \in \mathbb{Z}_{n}, i_{j} \leq p-1$, and if $\sum_{j=1}^{n} i_{j} \geq(n-1)(p-1)$, then $G \in \mathcal{O}_{p}$.

Jaeger proposes the following conjecture, whose truth would imply Tutte's 5-flow Conjecture.

Jaeger's [3]

Every 9-edge-connected multigraph admits a modulo 5-orientation.

[^7]
Jaeger proposes the following conjecture, whose truth would imply Tutte's 5-flow Conjecture.

Jaeger's [3]

Every 9-edge-connected multigraph admits a modulo 5-orientation.

Theorem ([4], 2019)

For any multigraphic sequence $d=\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ with $\min _{i \in[n]} d_{i} \geq 9$, d has a 9-edge-connected modulo 5-realization.

[^8]
Theorem ([2], 2019+)

Let $p>0$ be an odd prime, and let G be a graph with Euler genus g and edge connectivity
$\kappa^{\prime}(G) \geq \begin{cases}4 p-6+\lfloor g / 2\rfloor & g \leq 2, \\ (p-2)\lfloor\sqrt{6 g+0.25}+2.5\rfloor+1 & g \geq 3, \\ p \sqrt{4.98 g} & g \text { is sufficiently large } .\end{cases}$
Then G admits an $(f, b ; p)$-orientation.
${ }^{2}$ J.-B. Liu, P. Li, J. Li and H.-J. Lai, On weighted modulo orientation of graphs, submitted

- An additive basis of \mathbb{Z}_{n}^{p} is a multiset $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ of \mathbb{Z}_{n}^{p} such that for any $x \in \mathbb{Z}_{n}^{p}$, there exist scalars $c_{i} \in\{0,1\}$ such that

$$
x=\sum_{i=1}^{m} c_{i} x_{i}
$$

- $c(n, p)$ is the smallest positive integer t such that for any t (linear) bases B_{1}, \ldots, B_{t} of \mathbb{Z}_{n}^{p}, the union (with repetitions) $\cup_{i=1}^{t} B_{i}$ forms an additive basis of \mathbb{Z}_{n}^{p}.

Theorem

Let p be a prime at least 3 .
(i) (Davenport [5], see also [6]) $c(1, p)=p-1$.
(ii) (Mann and Wou [7]) $c(2, p)=p-1$.
(iii) (Alon, Linial and Meshulam [8])
$c(n, p) \leq(p-1) \log n+p-2$.

[^9]
Theorem ([9,2019+])

Let p be a prime at least 3 .
(i)Let K_{n} be a complete graph. If $n \geq 2(p-1)(5+3 \log (p-1))$, then $K_{n} \in \mathcal{O}_{p}$.
(ii) Let G be a connected chordal graph. If
$\kappa(G) \geq 2(p-1)(5+3 \log (p-1))-1$, then $G \in \mathcal{O}_{p}$.
(iii) Let $n_{1}=\frac{1}{2}(p-1)(p-2)+1$ and $n_{2}=\frac{1}{2} n_{1}\left(n_{1}-1\right)(p-1)$.

Then $G=K_{n_{1}, n_{2}} \in \mathcal{O}_{p}$.

[^10]A signed graph is an ordered pair (G, σ) consisting of a graph G with a mapping $\sigma: E(G) \rightarrow\{1,-1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative if $\sigma(e)=-1$.

A signed graph is an ordered pair (G, σ) consisting of a graph G with a mapping $\sigma: E(G) \rightarrow\{1,-1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative if $\sigma(e)=-1$.

A signed graph is an ordered pair (G, σ) consisting of a graph G with a mapping $\sigma: E(G) \rightarrow\{1,-1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative if $\sigma(e)=-1$.

Theorem ([9,2019+])

Let p be an odd prime and let (G, σ) be a ($p-1$)-unbalanced signed graph with $\kappa^{\prime}(G) \geq 12 p^{2}-28 p+15$. Then $(G, \sigma) \in \mathcal{O}_{p}$.

We believe that edge-connectivity of G is a linear function of p would suffice. We conclude the following conjectures.

Conjecture

There exists a constant c independent of p such that every $c p$-edge-connected graph has an $(f, b ; p)$-orientation.

Thank You!

[^0]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^1]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^2]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^3]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J.

[^4]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^5]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^6]: ${ }^{1}$ L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1)(2018), 534-542.

[^7]: ${ }^{3}$ F. Jaeger, Nowhere-zero flow problems, in: Selected Topics in Graph Theory, vol. 3, L. Beineke and R. Wilson, eds., Academic Press, London, New York, 1988, pp. 91-95.
 ${ }^{4}$ M. Han, H.-J Lai and J.-B Liu, Modulo 5-orientations and degree sequences, Discrete Applied Math., 260 (2019), 155-163.

[^8]: ${ }^{3}$ F. Jaeger, Nowhere-zero flow problems, in: Selected Topics in Graph Theory, vol. 3, L. Beineke and R. Wilson, eds., Academic Press, London, New York, 1988, pp. 91-95.
 ${ }^{4}$ M. Han, H.-J Lai and J.-B Liu, Modulo 5-orientations and degree sequences, Discrete Applied Math., 260 (2019), 155-163.

[^9]: ${ }^{5}$ H. Davenport, On the addition of residue classes, J. London Math. Soc., 10 (1935), 30-32.
 ${ }^{6}$ N. Alon, M. Nathanson and I. Ruzsa, The polynomial method and restricted sums of congruence classes, J. Number Theory, 56(2) (1996), 404-417.
 ${ }^{7}$
 ${ }^{7}$ H. B. Mann and Y. F. Wou, An addition theorem for the elementary abelian group of type (p; p), Monatsh Math., 102 (1986), 273-308.
 ${ }^{8}$ N. Alon, N. Linial and R. Meshulam, Additive bases of vector spaces over prime fields, J. Combin. Theory Ser. A, 57(1991), 203-210.

[^10]: ${ }^{8}$ J.-B. Liu, M. Han, J. Li and H.-J Lai, On weighted modulo orientations of certain graphs, submitted.

