Matroids with a Cyclic Arrangement of Circuits and Cocircuits

Nick Brettell, Deborah Chun, Tara Fife, and Charles Semple

Mathematical Research Institute (MATRIX) Tutte Centenary Retreat

Mississippi Discrete Mathematics Workshop, Oct., 2019

(日) (部) (王) (王)

What are Geometric Presentations?

The following are minimally dependent sets.

• Two dots on a point.

What are Geometric Presentations?

The following are minimally dependent sets.

- Two dots on a point.
- Three (not co-pointer) dots on a line.

The following are minimally dependent sets.

- Two dots on a point.
- Three (not co-pointer) dots on a line.
- Four (not co-linear) dots on a plane.
- Five (not co-planer) dots in space.

etc.

Circuits: minimal dependent sets

Circuits: minimal dependent sets

$$\{e_1, e_2, e_3\} \\ \{e_3, e_4, e_5\} \\ \{e_1, e_5, e_6\} \\ \{e_2, e_4, e_6\} \\ \{e_1, e_2, e_4, e_6\} \\ \{e_1, e_3, e_4, e_6\} \\ \{e_2, e_3, e_5, e_6\}$$

Hyperplanes: set H such that $r(H \cup e) = r(M)$ for all $e \in E(M) - H$ but r(H) = r(M) - 1.

Hyperplanes: set H such that $r(H \cup e) = r(M)$ for all $e \in E(M) - H$ but r(H) = r(M) - 1.

$$\{e_1, e_2, e_3\} \\ \{e_3, e_4, e_5\} \\ \{e_1, e_5, e_6\} \\ \{e_2, e_4, e_6\} \\ \{e_3, e_6\} \\ \{e_1, e_4\} \\ \{e_2, e_5\}$$

Cocircuits: The complement of a hyperplane, or a minimal set whose removal decreases the rank of the matroid.

MDMW2019 3/18

Cocircuits: The complement of a hyperplane, or a minimal set whose removal decreases the rank of the matroid.

$$\{ e_4, e_5, e_6 \} \\ \{ e_1, e_2, e_6 \} \\ \{ e_2, e_3, e_4 \} \\ \{ e_1, e_3, e_5 \} \\ \{ e_1, e_2, e_4, e_5 \} \\ \{ e_2, e_3, e_5, e_6 \} \\ \{ e_1, e_3, e_4, e_6 \}$$

Basis: a maximal independent set.

Basis: a maximal independent set.

$$\{e_1, e_2, e_3\} \\ \{e_1, e_2, e_6\} \\ \{e_1, e_2, e_4\} \\ \{e_1, e_2, e_5\} \\ \{e_1, e_3, e_5\} \\ \{e_1, e_3, e_5\} \\ \{e_1, e_4, e_5\} \\ \{e_1, e_4, e_6\} \\ etc.$$

Wheels and Whirls

Theorem (Wheels and Whirls Theorem (Tutte))

Let M be a non-empty 3-connected matroid. Then every element of M is in a 3-circuit and a 3-cocircuit if and only if M has rank at least three and is isomorphic to a wheel or a whirl.

Spikes and Swirls

For $r \ge 3$, a rank r spike is a matroid on 2r elements, where $E(M) = L_1 \sqcup L_2 \sqcup L_2 \sqcup \ldots \sqcup L_r$ and each $L_i \cup L_j$ is a 4-circuit and 4-cocircuit.

Spikes and Swirls

A rank $r \ge 3$ *swirl* is constructed as follows.

- Take a basis {*b*₁, *b*₂, *b*₃, ..., *b*_{*r*}}.
- Add 2-element independent sets $\{e_i, f_i\}$ such that $\{e_i, f_i\} \subseteq cl(b_i, b_{i+1}).$

 e_1

 (f_1)

 $(b_2$

 e_2

 t_2

ba

• Delete $\{b_1, b_2, b_3, ..., b_r\}$.

t4

b

 e_4

Spikes and Swirls

A rank $r \ge 3$ *swirl* is constructed as follows.

- Take a basis $\{b_1, b_2, b_3, \dots, b_r\}$.
- Add 2-element independent sets $\{e_i, f_i\}$ such that $\{e_i, f_i\} \subseteq cl(b_i, b_{i+1}).$

For $r \ge 3$, a rank r spike is a matroid on 2r elements, where $E(M) = L_1 \sqcup L_2 \sqcup L_2 \sqcup \ldots \sqcup L_r$ and each $L_i \cup L_j$ is a 4-circuit and 4-cocircuit.

- A rank $r \ge 3$ *swirl* is constructed as follows.
 - Take a basis {*b*₁, *b*₂, *b*₃,..., *b*_{*r*}}.
 - Add 2-element independent sets $\{e_i, f_i\}$ such that $\{e_i, f_i\} \subseteq cl(b_i, b_{i+1}).$
 - Delete $\{b_1, b_2, b_3, \dots, b_r\}$.

M has the *cyclic* (t-1,t)-*property* if there is a cyclic ordering σ of E(M) such that every t-1 consecutive elements of σ is contained in a *t*-element circuit and a *t*-element cocircuit.

• A direct sum of copies of $M(C_2)$ is (1,2)-cyclic.

M has the *cyclic* (t-1,t)-*property* if there is a cyclic ordering σ of E(M) such that every t-1 consecutive elements of σ is contained in a *t*-element circuit and a *t*-element cocircuit.

- A direct sum of copies of $M(C_2)$ is (1,2)-cyclic.
- Wheels and whirls are (2,3)-cyclic.
- Spikes and swirls are (3,4)-cyclic.

M has the *cyclic* (t-1,t)-*property* if there is a cyclic ordering σ of E(M) such that every t-1 consecutive elements of σ is contained in a *t*-element circuit and a *t*-element cocircuit.

- A direct sum of copies of $M(C_2)$ is (1,2)-cyclic.
- Wheels and whirls are (2,3)-cyclic.
- Spikes and swirls are (3,4)-cyclic.
- Motivating Question: Are these the only (3,4)-cyclic matroids?

M is a (t-1, t)-cyclic matroid of size *n*.

- C_i is a fixed circuit containing X_i
- C_i^{*} is a fixed cocircuit containing X_i

Theorem (Preview)

Let M be a matroid and suppose that $\sigma = (e_1, e_2, ..., e_n)$ is a cyclic (t-1, t)-ordering of E(M), where n is sufficiently large, and $t \ge 3$.

- Then n is even,
- and there is a unique t-element circuit and a unique t-element cocircuit containing X_i.

Furthermore, we can state precisely what these circuits and cocircuits are.

A circuit and a cocircuit of a matroid cannot intersect in exactly one element.

э.

<ロト <四ト < 回

MDMW2019 10/18

Lemma (1)

Let $n \ge 4t - 6$. For all $i \in [n]$, i) either $C_i \subseteq \sigma_{[i,i+3t-6]}$ or $C_{i+2t-4} \subseteq \sigma_{[i,i+3t-6]}$, and ii) either $C_i^* \subseteq \sigma_{[i,i+3t-6]}$ or $C_{i+2t-4}^* \not\subseteq \sigma_{[i,i+3t-6]}$.

Lemma (2)

Let $n \ge 4t - 6$. For all $i \in [n]$,

$$C_i, C_i^* \subseteq \sigma_{[i-(2t-4),i+3(t-2)]}.$$

イロト イヨト イヨト イヨト

Lemma (2)

Proof of Main Theorem

Lemma (3)If $n \ge 6t - 10$, then $C_i \subseteq \sigma[i-1, i+t-1]$ and $C_i \subseteq \sigma[i-1, i+t-1]$.

< A

Lemma (3)

If $n \ge 6t - 10$, then $C_i \subseteq \sigma[i - 1, i + t - 1]$

and

$$C_i \subseteq \sigma[i-1,i+t-1]$$

Corollary (4)

If $n \ge 6t - 10$, then there is only one t-circuit containing X_i and only one t-cocircuit containing X_i .

Lemma (3)

If $n \ge 6t - 10$, then $C_i \subseteq \sigma[i - 1, i + t - 1]$

and

$$C_i \subseteq \sigma[i-1,i+t-1]$$

Corollary (4)

If $n \ge 6t - 10$, then there is only one t-circuit containing X_i and only one t-cocircuit containing X_i .

Corollary (5)

If
$$n \ge 6t - 10$$
, $C_i = \sigma[i, i + t - 1]$, and $j \equiv i \pmod{2}$ then
 $C_j = \sigma[j, j + t - 1]$ and $C_{j+1} \subseteq \sigma[j, j + t - 1]$.

▲ @ ▶ ▲ @ ▶ ▲

Theorem

Suppose that $n \ge 6t - 10$ and $t \ge 3$. Then n is even and, for all $i \in [n]$, there is a unique t-element circuit and a unique t-element cocircuit containing X_i . Moreover, up to parity,

- If t is odd, then
 - {*e_i*, *e_{i+1}*,..., *e_{i+t-1}*} is a *t*-element circuit, when *i* is odd, and a *t*-element cocircuit, when *i* is even.
- If t is even, then:
 - { $e_i, e_{i+1}, \ldots, e_{i+t-1}$ } is a t-element circuit circuit and cocircuit, when i is odd.

We say that *M* is *well behaved* if $(n \ge t - 1, and)$ there exists a cyclic ordering $\sigma = (e_1, e_2, ..., e_n)$ of E(M) such that, for all odd $i \in \{1, 2, ..., n\}$, either

- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and $\{e_{i+1}, e_{i+2}, \dots, e_{i+t}\}$ is a *t*-element cocircuit, or
- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and *t*-element cocircuit.

Well behaved (t-1,t)-cyclic matroids

We say that *M* is *well behaved* if $(n \ge t - 1, \text{ and})$ there exists a cyclic ordering $\sigma = (e_1, e_2, \ldots, e_n)$ of E(M) such that, for all odd $i \in \{1, 2, \ldots, n\}$, either

- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and $\{e_{i+1}, e_{i+2}, \dots, e_{i+t}\}$ is a *t*-element cocircuit, or
- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and *t*-element cocircuit.

 $\sigma_1 = (e_1, e_2, e_3, e_4, e_5, e_6) \text{ and } \sigma_2 = (e_4, e_2, e_6, e_1, e_3, e_5)$ are cyclic (2,3)-orderings. We say that *M* is *well behaved* if $(n \ge t - 1, and)$ there exists a cyclic ordering $\sigma = (e_1, e_2, ..., e_n)$ of E(M) such that, for all odd $i \in \{1, 2, ..., n\}$, either

- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and $\{e_{i+1}, e_{i+2}, \dots, e_{i+t}\}$ is a *t*-element cocircuit, or
- $\{e_i, e_{i+1}, \dots, e_{i+t-1}\}$ is a *t*-element circuit and *t*-element cocircuit.

Lemma (Lemma 6)

Let $t \ge 1$ and let M be a t-cyclic matroid. Then $|E(M)| \ge 2t - 2$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (6)

Let $t \ge 1$ and let M be a well behaved (t-1,t)-cyclic matroid. Then $|E(M)| \ge 2t-2$.

 MDMW2019
 15 / 18

• Let M be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.

(A) → (A

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- This means, by our previous lemma, that it is possible for a matroid on E(M) to be a well behaved (t+2)-cyclic matroid.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- This means, by our previous lemma, that it is possible for a matroid on E(M) to be a well behaved (t+2)-cyclic matroid.
- Let M' be the truncation of M.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- Let M' be the truncation of M.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.
- Suppose $\{e_{j+1}, e_{j+2}, \dots, e_{j+t}\}$ and $\{e_{j+3}, e_{j+4}, \dots, e_{j+t+2}\}$ are *t*-element cocircuits of *M*, then
- $\{f\} \cup (E(M) \{e_{j+1}, e_{j+2}, \dots, e_{j+t+2}\})$ is a hyperplane of M_1 .

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.
- Suppose $\{e_{j+1}, e_{j+2}, \dots, e_{j+t}\}$ and $\{e_{j+3}, e_{j+4}, \dots, e_{j+t+2}\}$ are *t*-element cocircuits of *M*, then
- $\{f\} \cup (E(M) \{e_{j+1}, e_{j+2}, \dots, e_{j+t+2}\})$ is a hyperplane of M_1 .
- So $E(M) \{e_{j+1}, e_{j+2}, ..., e_{j+t+2}\}$ is a hyperplane of M'.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.
- $\{e_{j+1}, e_{j+2}, \dots, e_{j+t+2}\}$ is a cocircuit.
- Let N be the Higgs lift of M'.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.
- $\{e_{j+1}, e_{j+2}, ..., e_{j+t+2}\}$ is a cocircuit.
- Let M'_1 be the matroid obtained by freely coextending M' by an element, g, and then deleting g.

- Let *M* be well behaved a (t-1, t)-cyclic matroid with $n \ge 2(t+2)-2$.
- M' is obtained by freely adding an element, f, to M to get M_1 and then contracting f from M_1 to get M'.
- $\{e_{j+1}, e_{j+2}, ..., e_{j+t+2}\}$ is a cocircuit.
- Let M'_1 be the matroid obtained by freely coextending M' by an element, g, and then deleting g.
- By duality, we get the right (t+2)-circuits.

Conjecture

- Let *M* be well behaved (t-1,t)-cyclic matroid with $n \ge 2(t+2)-2$.
- *M'* is obtained by **not necessarily freely**, adding an element, *f*, to *M* to get *M*₁ and then contracting *f* from *M*₁ to get *M'*.
- Let M'_1 be the matroid obtained by **not necessarily freely**, coextending M' by an element, g, and then deleting g.
- Then N has a well behaved-(t+2)-cyclic ordering.

Conjecture

- Let *M* be well behaved (t-1,t)-cyclic matroid with $n \ge 2(t+2)-2$.
- *M'* is obtained by **not necessarily freely**, adding an element, *f*, to *M* to get *M*₁ and then contracting *f* from *M*₁ to get *M'*.
- Let M'_1 be the matroid obtained by **not necessarily freely**, coextending M' by an element, g, and then deleting g.
- Then N has a well behaved-(t+2)-cyclic ordering.

Conjecture

Let t be an integer exceeding two, and let M be a t-cyclic matroid.

- If t is even, then M can be obtained from a spike or a swirl by a sequence of inflations.
- If t is odd, then M can be obtained from a wheel or whirl by a sequence of inflations.

Thank You!

イロト イヨト イヨト