Matroids with a Cyclic Arrangement of

Circuits and Cocircuits

Nick Brettell, Deborah Chun, Tara Fife, and Charles Semple

> Mathematical Research Institute (MATRIX) Tutte Centenary Retreat

Mississippi Discrete Mathematics Workshop, Oct., 2019

What are Geometric Presentations?

The following are minimally dependent sets.

- Two dots on a point.

What are Geometric Presentations?

The following are minimally dependent sets.

- Two dots on a point.
- Three (not co-pointer) dots on a line.

What are Geometric Presentations?

The following are minimally dependent sets.

- Two dots on a point.
- Three (not co-pointer) dots on a line.
- Four (not co-linear) dots on a plane.
- Five (not co-planer) dots in space.
- etc.

What is a Matroid?

Circuits: minimal dependent sets

What is a Matroid?

Circuits: minimal dependent sets

$$
\begin{aligned}
& \left\{e_{1}, e_{2}, e_{3}\right\} \\
& \left\{e_{3}, e_{4}, e_{5}\right\} \\
& \left\{e_{1}, e_{5}, e_{6}\right\} \\
& \left\{e_{2}, e_{4}, e_{6}\right\} \\
& \left\{e_{1}, e_{2}, e_{4}, e_{5}\right\} \\
& \left\{e_{1}, e_{3}, e_{4}, e_{6}\right\} \\
& \left\{e_{2}, e_{3}, e_{5}, e_{6}\right\}
\end{aligned}
$$

What is a Matroid?

Hyperplanes: set H such that $r(H \cup$ $e)=r(M)$ for all $e \in E(M)-H$ but $r(H)=r(M)-1$.

What is a Matroid?

Hyperplanes: set H such that $r(H \cup$ $e)=r(M)$ for all $e \in E(M)-H$ but $r(H)=r(M)-1$.

$$
\begin{aligned}
& \left\{e_{1}, e_{2}, e_{3}\right\} \\
& \left\{e_{3}, e_{4}, e_{5}\right\} \\
& \left\{e_{1}, e_{5}, e_{6}\right\} \\
& \left\{e_{2}, e_{4}, e_{6}\right\} \\
& \left\{e_{3}, e_{6}\right\} \\
& \left\{e_{1}, e_{4}\right\} \\
& \left\{e_{2}, e_{5}\right\}
\end{aligned}
$$

What is a Matroid?

Cocircuits: The complement of a hyperplane, or a minimal set whose removal decreases the rank of the matroid.

What is a Matroid?

Cocircuits: The complement of a hyperplane, or a minimal set whose removal decreases the rank of the matroid.

$$
\begin{aligned}
& \left\{e_{4}, e_{5}, e_{6}\right\} \\
& \left\{e_{1}, e_{2}, e_{6}\right\} \\
& \left\{e_{2}, e_{3}, e_{4}\right\} \\
& \left\{e_{1}, e_{3}, e_{5}\right\} \\
& \left\{e_{1}, e_{2}, e_{4}, e_{5}\right\} \\
& \left\{e_{2}, e_{3}, e_{5}, e_{6}\right\} \\
& \left\{e_{1}, e_{3}, e_{4}, e_{6}\right\}
\end{aligned}
$$

What is a Matroid?

Basis: a maximal independent set.

What is a Matroid?

Basis: a maximal independent set.

$$
\begin{aligned}
& \left\{e_{1}, e_{2}, e_{3}\right\} \\
& \left\{e_{1}, e_{2}, e_{6}\right\} \\
& \left\{e_{1}, e_{2}, e_{4}\right\} \\
& \left\{e_{1}, e_{2}, e_{5}\right\} \\
& \left\{e_{1}, e_{3}, e_{4}\right\} \\
& \left\{e_{1}, e_{3}, e_{5}\right\} \\
& \left\{e_{1}, e_{4}, e_{5}\right\} \\
& \left\{e_{1}, e_{4}, e_{6}\right\} \\
& \text { etc. }
\end{aligned}
$$

Wheels and Whirls

Theorem (Wheels and Whirls Theorem (Tutte))

Let M be a non-empty 3-connected matroid. Then every element of M is in a 3-circuit and a 3-cocircuit if and only if M has rank at least three and is isomorphic to a wheel or a whirl.

Spikes and Swirls

For $r \geq 3$, a rank r spike is a matroid on $2 r$ elements, where $E(M)=L_{1} \sqcup L_{2} \sqcup L_{2} \sqcup \ldots \sqcup L_{r}$ and each $L_{i} \cup L_{j}$ is a 4-circuit and 4-cocircuit.

Spikes and Swirls

A rank $r \geq 3$ swirl is constructed as follows.

- Take a basis $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.
- Add 2-element independent sets $\left\{e_{i}, f_{i}\right\}$ such that $\left\{e_{i}, f_{i}\right\} \subseteq \operatorname{cl}\left(b_{i}, b_{i+1}\right)$.
- Delete $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.

Spikes and Swirls

A rank $r \geq 3$ swirl is constructed as follows.

- Take a basis $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.
- Add 2-element independent sets $\left\{e_{i}, f_{i}\right\}$ such that $\left\{e_{i}, f_{i}\right\} \subseteq \operatorname{cl}\left(b_{i}, b_{i+1}\right)$.
- Delete $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.

Spikes and Swirls

For $r \geq 3$, a rank r spike is a matroid on $2 r$ elements, where $E(M)=L_{1} \sqcup L_{2} \sqcup L_{2} \sqcup \ldots \sqcup L_{r}$ and each $L_{i} \cup L_{j}$ is a 4-circuit and 4-cocircuit.

A rank $r \geq 3$ swirl is constructed as follows.

- Take a basis $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.
- Add 2-element independent sets $\left\{e_{i}, f_{i}\right\}$ such that $\left\{e_{i}, f_{i}\right\} \subseteq \operatorname{cl}\left(b_{i}, b_{i+1}\right)$.
- Delete $\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{r}\right\}$.

Cyclic ($t-1, t$)-property

M has the cyclic $(t-1, t)$-property if there is a cyclic ordering σ of $E(M)$ such that every $t-1$ consecutive elements of σ is contained in a t-element circuit and a t-element cocircuit.

- A direct sum of copies of $M\left(C_{2}\right)$ is $(1,2)$-cyclic.

Cyclic ($t-1, t$)-property

M has the cyclic $(t-1, t)$-property if there is a cyclic ordering σ of $E(M)$ such that every $t-1$ consecutive elements of σ is contained in a t-element circuit and a t-element cocircuit.

- A direct sum of copies of $M\left(C_{2}\right)$ is $(1,2)$-cyclic.
- Wheels and whirls are (2,3)-cyclic.
- Spikes and swirls are (3,4)-cyclic.

Cyclic ($t-1, t$)-property

M has the cyclic $(t-1, t)$-property if there is a cyclic ordering σ of $E(M)$ such that every $t-1$ consecutive elements of σ is contained in a t-element circuit and a t-element cocircuit.

- A direct sum of copies of $M\left(C_{2}\right)$ is $(1,2)$-cyclic.
- Wheels and whirls are (2,3)-cyclic.
- Spikes and swirls are (3,4)-cyclic.
- Motivating Question: Are these the only (3,4)-cyclic matroids?

Notation

M is a $(t-1, t)$-cyclic matroid of size n.

- $X_{i}=\{i, i+1, \ldots, i+t-2\}$
a $t-1$ interval starting at i
- C_{i} is a fixed circuit containing X_{i}
- C_{i}^{*} is a fixed cocircuit containing X_{i}

Main Result

Theorem (Preview)

Let M be a matroid and suppose that $\sigma=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a cyclic ($t-1, t$)-ordering of $E(M)$, where n is sufficiently large, and $t \geq 3$.

- Then n is even,
- and there is a unique t-element circuit and a unique t-element cocircuit containing X_{i}.
Furthermore, we can state precisely what these circuits and cocircuits are.

Helpful Tool

A circuit and a cocircuit of a matroid cannot intersect in exactly one element.

Lemma 1

Lemma 1

$$
\begin{aligned}
& \left|C_{i} \cap C_{i+t-2}^{*}\right| \geq 2, \\
& \text { so } c_{i}=c_{i+t-2}^{*}
\end{aligned}
$$

Lemma 1

Lemma 1

Lemma 1

Lemma (1)

Let $n \geq 4 t-6$. For all $i \in[n]$,
(i) either $C_{i} \subseteq \sigma_{[i, i+3 t-6]}$ or $C_{i+2 t-4} \subseteq \sigma_{[i, i+3 t-6]}$, and
(11) either $C_{i}^{*} \subseteq \sigma_{[i, i+3 t-6]}$ or $C_{i+2 t-4}^{*} \nsubseteq \sigma_{[i, i+3 t-6]}$.

Lemma 2

Lemma (2)

Let $n \geq 4 t-6$. For all $i \in[n]$,

$$
C_{i}, C_{i}^{*} \subseteq \sigma_{[i-(2 t-4), i+3(t-2)]}
$$

Lemma 2

Lemma (2)

Let $n \geq 4 t-6$. For all $i \in[n]$,

$$
C_{i}, C_{i}^{*} \subseteq \sigma_{[i-(2 t-4), i+3(t-2)]}
$$

Proof of Main Theorem

Lemma (3)

If $n \geq 6 t-10$, then
$C_{i} \subseteq \sigma[i-1, i+t-1] \quad$ and $\quad C_{i} \subseteq \sigma[i-1, i+t-1]$.

Proof of Main Theorem

Lemma (3)

If $n \geq 6 t-10$, then

$$
C_{i} \subseteq \sigma[i-1, i+t-1] \quad \text { and } \quad C_{i} \subseteq \sigma[i-1, i+t-1] .
$$

Corollary (4)

If $n \geq 6 t-10$, then there is only one t-circuit containing X_{i} and only one t-cocircuit containing X_{i}.

Proof of Main Theorem

Lemma (3)

If $n \geq 6 t-10$, then
$C_{i} \subseteq \sigma[i-1, i+t-1] \quad$ and $\quad C_{i} \subseteq \sigma[i-1, i+t-1]$.

Corollary (4)

If $n \geq 6 t-10$, then there is only one t-circuit containing X_{i} and only one t-cocircuit containing X_{i}.

Corollary (5)

If $n \geq 6 t-10, C_{i}=\sigma[i, i+t-1]$, and $j \equiv i(\bmod 2)$ then
$C_{j}=\sigma[j, j+t-1] \quad$ and $\quad C_{j+1} \subseteq \sigma[j, j+t-1]$.

Theorem [1]

Theorem

Suppose that $n \geq 6 t-10$ and $t \geq 3$. Then n is even and, for all $i \in[n]$, there is a unique t-element circuit and a unique t-element cocircuit containing $\left.X_{i}\right\}$. Moreover, up to parity,

- If t is odd, then
- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit, when i is odd, and a t-element cocircuit, when i is even.
- If t is even, then:
- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit circuit and cocircuit, when i is odd.

Well behaved ($\mathrm{t}-1, \mathrm{t}$)-cyclic matroids

We say that M is well behaved if ($n \geq t-1$, and) there exists a cyclic ordering $\sigma=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of $E(M)$ such that, for all odd $i \in\{1,2, \ldots, n\}$, either

- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and $\left\{e_{i+1}, e_{i+2}, \ldots, e_{i+t}\right\}$ is a t-element cocircuit, or
- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and t-element cocircuit.

Well behaved ($\mathrm{t}-1, \mathrm{t}$)-cyclic matroids

We say that M is well behaved if ($n \geq t-1$, and) there exists a cyclic ordering $\sigma=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of $E(M)$ such that, for all odd $i \in\{1,2, \ldots, n\}$, either

- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and $\left\{e_{i+1}, e_{i+2}, \ldots, e_{i+t}\right\}$ is a t-element cocircuit, or
- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and t-element cocircuit.

$$
\begin{gathered}
\sigma_{1}=\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right) \text { and } \sigma_{2}=\left(e_{4}, e_{2}, e_{6}, e_{1}, e_{3}, e_{5}\right) \\
\text { are cyclic (2,3)-orderings. }
\end{gathered}
$$

Well behaved ($\mathrm{t}-1, \mathrm{t}$)-cyclic matroids

We say that M is well behaved if ($n \geq t-1$, and) there exists a cyclic ordering $\sigma=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ of $E(M)$ such that, for all odd $i \in\{1,2, \ldots, n\}$, either

- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and $\left\{e_{i+1}, e_{i+2}, \ldots, e_{i+t}\right\}$ is a t-element cocircuit, or
- $\left\{e_{i}, e_{i+1}, \ldots, e_{i+t-1}\right\}$ is a t-element circuit and t-element cocircuit.

Lemma (Lemma 6)

Let $t \geq 1$ and let M be a t-cyclic matroid. Then $|E(M)| \geq 2 t-2$.

Size Lemma

Lemma (6)

> Let $t \geq 1$ and let M be a well behaved $(t-1, t)$-cyclic matroid. Then $|E(M)| \geq 2 t-2$.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- This means, by our previous lemma, that it is possible for a matroid on $E(M)$ to be a well behaved $(t+2)$-cyclic matroid.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- This means, by our previous lemma, that it is possible for a matroid on $E(M)$ to be a well behaved $(t+2)$-cyclic matroid.
- Let M^{\prime} be the truncation of M.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- Let M^{\prime} be the truncation of M.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- Suppose $\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t}\right\}$ and $\left\{e_{j+3}, e_{j+4}, \ldots, e_{j+t+2}\right\}$ are t-element cocircuits of M, then
- $\{f\} \cup\left(E(M)-\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}\right)$ is a hyperplane of M_{1}.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- Suppose $\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t}\right\}$ and $\left\{e_{j+3}, e_{j+4}, \ldots, e_{j+t+2}\right\}$ are t-element cocircuits of M, then
- $\{f\} \cup\left(E(M)-\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}\right)$ is a hyperplane of M_{1}.
- So $E(M)-\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}$ is a hyperplane of M^{\prime}.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- $\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}$ is a cocircuit.
- Let N be the Higgs lift of M^{\prime}.

Construction

- Let M be well behaved a ($t-1, t$)-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- $\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}$ is a cocircuit.
- Let M_{1}^{\prime} be the matroid obtained by freely coextending M^{\prime} by an element, g, and then deleting g.

Construction

- Let M be well behaved a $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by freely adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- $\left\{e_{j+1}, e_{j+2}, \ldots, e_{j+t+2}\right\}$ is a cocircuit.
- Let M_{1}^{\prime} be the matroid obtained by freely coextending M^{\prime} by an element, g, and then deleting g.
- By duality, we get the right $(t+2)$-circuits.

Conjecture

- Let M be well behaved $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by not necessarily freely, adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- Let M_{1}^{\prime} be the matroid obtained by not necessarily freely, coextending M^{\prime} by an element, g, and then deleting g.
- Then N has a well behaved- $(t+2)$-cyclic ordering.

Conjecture

- Let M be well behaved $(t-1, t)$-cyclic matroid with $n \geq 2(t+2)-2$.
- M^{\prime} is obtained by not necessarily freely, adding an element, f, to M to get M_{1} and then contracting f from M_{1} to get M^{\prime}.
- Let M_{1}^{\prime} be the matroid obtained by not necessarily freely, coextending M^{\prime} by an element, g, and then deleting g.
- Then N has a well behaved- $(t+2)$-cyclic ordering.

Conjecture

Let t be an integer exceeding two, and let M be a t-cyclic matroid.

- If t is even, then M can be obtained from a spike or a swirl by a sequence of inflations.
- If t is odd, then M can be obtained from a wheel or whirl by a sequence of inflations.

Thank You!

