Variations on a Theme of Turán

Neal Bushaw
MSDiscrete, 26 Oct 2019

College of Humanities and Sciences

Part 1: Introduction / History

Who?

Joint work with almost everyone...

Who?

Joint work with almost everyone...

Jozsef Balogh (Illinois)
Mauricio Collares Neto (IMPA)
Andrzej Czygrinow (ASU)
Nathan Kettle (Cambridge / IMPA / \$\$\$)
Hong Liu (Illinois)
Rob Morris (IMPA)
Maryam Sharifzadeh (Illinois)
Jangwon Yie (ASU)

The Forbidden Subgraph Problem

The setup...
Fix a graph H

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small)

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large)

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large).

The Question:

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large).

The Question:

If I tell you only that G contains no subgraph isomorphic to H, what can you say about G ?

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large).

The Question:

If I tell you only that G contains no subgraph isomorphic to H, what can you say about G ?
(We say G is H-free, or that H is forbidden in G.)

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large).

The Question:

If I tell you only that G contains no subgraph isomorphic to H, what can you say about G ?
(We say G is H-free, or that H is forbidden in G.)

The Extremal Question:

The Forbidden Subgraph Problem

The setup...
Fix a graph H (small), and consider an arbitrary order n graph G (large).

The Question:

If I tell you only that G contains no subgraph isomorphic to H, what can you say about G ?
(We say G is H-free, or that H is forbidden in G.)

The Extremal Question:

Given a graph H, how many edges can an n-vertex H-free graph contain?

A Little More Formal

Definition

5/25

A Little More Formal

Definition

Given a graph H, the extremal number, ex (n, H), is the maximum number of edges among all n-vertex H-free graphs:

A Little More Formal

Definition

Given a graph H, the extremal number, ex (n, H), is the maximum number of edges among all n-vertex H-free graphs:

$$
\operatorname{ex}(n, H)=\max \{|E(G)|: G \text { is } H \text {-free, }|V(G)|=n\}
$$

A Little More Formal

Definition

Given a graph H, the extremal number, ex (n, H), is the maximum number of edges among all n-vertex H-free graphs:

$$
\operatorname{ex}(n, H)=\max \{|E(G)|: G \text { is } H \text {-free, }|V(G)|=n\}
$$

$\operatorname{Ex}(n, H)=\{G: G$ is H-free, $|V(G)|=n,|E(G)|=\operatorname{ex}(n, H)\}$.

A Little More Formal

Definition

Given a graph H, the extremal number, $\operatorname{ex}(n, H)$, is the maximum number of edges among all n-vertex H-free graphs:

$$
\operatorname{ex}(n, H)=\max \{|E(G)|: G \text { is } H \text {-free, }|V(G)|=n\}
$$

$$
\operatorname{Ex}(n, H)=\{G: G \text { is } H \text {-free },|V(G)|=n,|E(G)|=\operatorname{ex}(n, H)\}
$$

We'll use H_{Ex} to represent some $H \in \operatorname{Ex}(n, H)$.

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor
$$

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil
$$

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\begin{gathered}
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \\
\operatorname{Ex}\left(n, K_{3}\right)=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
\end{gathered}
$$

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\begin{gathered}
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \\
\operatorname{Ex}\left(n, K_{3}\right)=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
\end{gathered}
$$

...and generalize to larger complete graphs.

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\begin{gathered}
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \\
\operatorname{Ex}\left(n, K_{3}\right)=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
\end{gathered}
$$

...and generalize to larger complete graphs.

Turán, 1941

We denote by $T_{n, r}$ the Turán Graph, which is a complete r-partite graph on n vertices with all parts nearly equal sized.

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\begin{gathered}
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \\
\operatorname{Ex}\left(n, K_{3}\right)=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
\end{gathered}
$$

...and generalize to larger complete graphs.

Turán, 1941

We denote by $T_{n, r}$ the Turán Graph, which is a complete r-partite graph on n vertices with all parts nearly equal sized. Then,

$$
\operatorname{ex}\left(n, K_{r+1}\right)=|E(T(n, r))|
$$

Classical Theorems

Let's consider K_{3} as our forbidden graph.

Mantel, 1907

$$
\begin{gathered}
\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor\left\lceil\frac{n}{2}\right\rceil, \\
\operatorname{Ex}\left(n, K_{3}\right)=K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil} .
\end{gathered}
$$

...and generalize to larger complete graphs.

Turán, 1941

We denote by $T_{n, r}$ the Turán Graph, which is a complete r-partite graph on n vertices with all parts nearly equal sized. Then,

$$
\operatorname{ex}\left(n, K_{r+1}\right)=|E(T(n, r))| \leq\left(1-\frac{1}{r}\right)\binom{n}{2} .
$$

Recent Extension

What if we let the forbidden graph grow with n ?

What if we let the forbidden graph grow with n ?

Balogh, B., Collares Neto, Liu, Morris, Sharifzadeh

Let $r=r(n) \in \mathbb{N}_{0}$ be a function satisfying $r \leq(\log n)^{1 / 4}$ for every $n \in \mathbb{N}$. Then almost all K_{r+1}-free graphs on n vertices are r-partite.

What if we let the forbidden graph grow with n ?

Balogh, B., Collares Neto, Liu, Morris, Sharifzadeh

Let $r=r(n) \in \mathbb{N}_{0}$ be a function satisfying $r \leq(\log n)^{1 / 4}$ for every $n \in \mathbb{N}$. Then almost all K_{r+1}-free graphs on n vertices are r-partite.
(Extends recent work of Kolaitis, Prömel, Rothschild)

Recent Extension

What if we let the forbidden graph grow with n ?
Balogh, B., Collares Neto, Liu, Morris, Sharifzadeh
Let $r=r(n) \in \mathbb{N}_{0}$ be a function satisfying $r \leq(\log n)^{1 / 4}$ for every $n \in \mathbb{N}$. Then almost all K_{r+1}-free graphs on n vertices are r-partite.
(Extends recent work of Kolaitis, Prömel, Rothschild)

Further directions...

-What happens if r grows faster?

Recent Extension

What if we let the forbidden graph grow with n ?
Balogh, B., Collares Neto, Liu, Morris, Sharifzadeh
Let $r=r(n) \in \mathbb{N}_{0}$ be a function satisfying $r \leq(\log n)^{1 / 4}$ for every $n \in \mathbb{N}$. Then almost all K_{r+1}-free graphs on n vertices are r-partite.
(Extends recent work of Kolaitis, Prömel, Rothschild)

Further directions...

-What happens if r grows faster?

- Can we do similar things forbidding other growing families of graphs?

Classical Theorems (cont.)

Erdős-Stone, 1946

For any $(r+1)$-chromatic graph H,

College of Humanities

Classical Theorems (cont.)

Erdős-Stone, 1946

For any $(r+1)$-chromatic graph H,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

Classical Theorems (cont.)

Erdős-Stone, 1946

For any $(r+1)$-chromatic graph H,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

Note:

Erdős-Stone gives very little information about forbidding bipartite graphs!

College of Humanities

Part 2: Multiple Copies

9/25

 and Sciences
A Generalization

A New Question:

What if we allow a few copies of H, but not more?

A Generalization

A New Question:

What if we allow a few copies of H, but not more?

Slightly More Formal:

How many edges can an n-vertex graph contain, given that it doesn't contain k vertex disjoint copies of H ?

Some More Notation

Definition

For $k \in \mathbb{N}$ and a graph H, we use $k \cdot H$ to denote k vertex disjoint copies of H.

Some More Notation

Definition

For $k \in \mathbb{N}$ and a graph H, we use $k \cdot H$ to denote k vertex disjoint copies of H.

Definition

For graphs G, H, we use $G+H$ to denote the join of G and H; that is,

$$
\begin{gathered}
V(G+H)=V(G) \cup V(H) \\
E(G+H)=E(G) \cup E(H) \cup(V(G) \times V(H))
\end{gathered}
$$

Revenge of ES46

Erdős-Stone, 1946 (again)

For any $(r+1)$-chromatic graph H,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

Erdös-Stone, 1946 (again)

For any $(r+1)$-chromatic graph H,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

So for graphs of chromatic number at least 3, the extremal numbers for multiple copies do not change (asymptotically). But what about bipartite graphs?

Revenge of ES46

Erdős-Stone, 1946 (again)
For any $(r+1)$-chromatic graph H,

$$
\operatorname{ex}(n, H)=\left(1-\frac{1}{r}+o(1)\right)\binom{n}{2}
$$

So for graphs of chromatic number at least 3, the extremal numbers for multiple copies do not change (asymptotically). But what about bipartite graphs?

A Simple Construction

For any $H_{\mathrm{Ex}} \in \operatorname{Ex}(n-k+1, H), K_{k-1}+H_{\mathrm{Ex}}$ is a $k \cdot H$-free graph on n vertices.

But where is this construction extremal?

Gorgol, 2011

Let P_{ℓ} denote the path on ℓ vertices, and M_{s} denote the (nearly) perfect matching on s vertices. Then for $k=2,3$ and n sufficiently large,

$$
\operatorname{ex}\left(n, k \cdot P_{3}\right)=\binom{k-1}{2}+(k-1)(n-k+1)+\left\lfloor\frac{n-k+1}{2}\right\rfloor
$$

But where is this construction extremal?

Gorgol, 2011

Let P_{ℓ} denote the path on ℓ vertices, and M_{s} denote the (nearly) perfect matching on s vertices. Then for $k=2,3$ and n sufficiently large,

$$
\operatorname{ex}\left(n, k \cdot P_{3}\right)=\binom{k-1}{2}+(k-1)(n-k+1)+\left\lfloor\frac{n-k+1}{2}\right\rfloor,
$$

$$
\operatorname{Ex}\left(n, k \cdot P_{3}\right)=K_{k-1}+M_{n-k+1}
$$

But where is this construction extremal?

Gorgol, 2011

Let P_{ℓ} denote the path on ℓ vertices, and M_{s} denote the (nearly) perfect matching on s vertices. Then for $k=2,3$ and n sufficiently large,

$$
\operatorname{ex}\left(n, k \cdot P_{3}\right)=\binom{k-1}{2}+(k-1)(n-k+1)+\left\lfloor\frac{n-k+1}{2}\right\rfloor,
$$

$$
\operatorname{Ex}\left(n, k \cdot P_{3}\right)=K_{k-1}+M_{n-k+1}=K_{k-1}+H_{\mathrm{Ex}}
$$

But where is this construction extremal?

Gorgol, 2011

Let P_{ℓ} denote the path on ℓ vertices, and M_{s} denote the (nearly) perfect matching on s vertices. Then for $k=2,3$ and n sufficiently large,

$$
\begin{gathered}
\operatorname{ex}\left(n, k \cdot P_{3}\right)=\binom{k-1}{2}+(k-1)(n-k+1)+\left\lfloor\frac{n-k+1}{2}\right\rfloor, \\
\operatorname{Ex}\left(n, k \cdot P_{3}\right)=K_{k-1}+M_{n-k+1}=K_{k-1}+H_{\mathrm{Ex}} .
\end{gathered}
$$

B.-Kettle '11

The above is correct for all k and all $n \geq 7 k$.

But where is this construction extremal?

Gorgol, 2011

Let P_{ℓ} denote the path on ℓ vertices, and M_{s} denote the (nearly) perfect matching on s vertices. Then for $k=2,3$ and n sufficiently large,

$$
\begin{gathered}
\operatorname{ex}\left(n, k \cdot P_{3}\right)=\binom{k-1}{2}+(k-1)(n-k+1)+\left\lfloor\frac{n-k+1}{2}\right\rfloor, \\
\operatorname{Ex}\left(n, k \cdot P_{3}\right)=K_{k-1}+M_{n-k+1}=K_{k-1}+H_{\mathrm{Ex}} .
\end{gathered}
$$

B. -Kettle '11

The above is correct for all k and all $n \geq 7 k$.(Yuan-Zhang '17: all $k!!)$

Longer Paths

The hope here was that the structure extremal for a single copy of H would extend to $k \cdot H$ using $K_{k-1}+H_{e x}$, but...

Longer Paths

The hope here was that the structure extremal for a single copy of H would extend to $k \cdot H$ using $K_{k-1}+H_{e x}$, but...

B.-Kettle

For all $k \geq 2, \ell \geq 4$, and $n \geq 2 \ell+2 k \ell\left(\left\lceil\frac{\ell}{2}\right\rceil+1\right)\binom{\ell}{\left.\frac{\ell}{2}\right\rfloor}$,

$$
\operatorname{ex}\left(n, k \cdot P_{\ell}\right)=\binom{k\left\lfloor\frac{\ell}{2}\right\rfloor-1}{2}+\left(k\left\lfloor\frac{\ell}{2}\right\rfloor-1\right)\left(n-k\left\lfloor\frac{\ell}{2}\right\rfloor+1\right)+1_{\ell \text { is odd }} .
$$

Longer Paths

The hope here was that the structure extremal for a single copy of H would extend to $k \cdot H$ using $K_{k-1}+H_{e x}$, but...

B.-Kettle

For all $k \geq 2, \ell \geq 4$, and $n \geq 2 \ell+2 k \ell\left(\left\lceil\frac{\ell}{2}\right\rceil+1\right)\binom{\ell}{\left.\frac{\ell}{2}\right\rfloor}$,
$\operatorname{ex}\left(n, k \cdot P_{\ell}\right)=\binom{k\left\lfloor\frac{\ell}{2}\right\rfloor-1}{2}+\left(k\left\lfloor\frac{\ell}{2}\right\rfloor-1\right)\left(n-k\left\lfloor\frac{\ell}{2}\right\rfloor+1\right)+1_{\ell \text { is odd }}$.

Here, the extremal graph is $K_{k\left\lfloor\frac{\ell}{2}\right\rfloor-1}+E_{n-k\left\lfloor\frac{\ell}{2}\right\rfloor+1}$ (with a single edge added if ℓ is odd)

Longer Paths

The hope here was that the structure extremal for a single copy of H would extend to $k \cdot H$ using $K_{k-1}+H_{e x}$, but...

B.-Kettle

For all $k \geq 2, \ell \geq 4$, and $n \geq 2 \ell+2 k \ell\left(\left\lceil\frac{\ell}{2}\right\rceil+1\right)\binom{\ell}{\left.\frac{\ell}{2}\right\rfloor}$,
$\operatorname{ex}\left(n, k \cdot P_{\ell}\right)=\binom{k\left\lfloor\frac{\ell}{2}\right\rfloor-1}{2}+\left(k\left\lfloor\frac{\ell}{2}\right\rfloor-1\right)\left(n-k\left\lfloor\frac{\ell}{2}\right\rfloor+1\right)+1_{\ell \text { is odd }}$.

Here, the extremal graph is $K_{k\left\lfloor\frac{\ell}{2}\right\rfloor-1}+E_{n-k\left\lfloor\frac{\ell}{2}\right\rfloor+1}$ (with a single edge added if ℓ is odd), and this is not $K_{k-1}+H_{E x}$!

A New Class of Graphs

Where is the given construction extremal?

A New Class of Graphs

Where is the given construction extremal?

Definition

A graph H is forestable if it meets the following conditions:

A New Class of Graphs

Where is the given construction extremal?

Definition

A graph H is forestable if it meets the following conditions:

1. H is bipartite,

A New Class of Graphs

Where is the given construction extremal?

Definition

A graph H is forestable if it meets the following conditions:

1. H is bipartite,
2. H contains a cycle,

A New Class of Graphs

Where is the given construction extremal?

Definition

A graph H is forestable if it meets the following conditions:

1. H is bipartite,
2. H contains a cycle,
3. There is a vertex $v \in V(H)$ such that $H[V(H) \backslash v]$ is a forest.

Forestable Graphs

B.-Kettle

For a forestable graph $H, k \in \mathbb{N}$, and n sufficiently large,

$$
\operatorname{ex}(n, k \cdot H)=\binom{k-1}{2}+(k-1)(n-k+1)+\operatorname{ex}(n-k+1, H)
$$

Forestable Graphs

B.-Kettle

For a forestable graph $H, k \in \mathbb{N}$, and n sufficiently large,

$$
\operatorname{ex}(n, k \cdot H)=\binom{k-1}{2}+(k-1)(n-k+1)+\operatorname{ex}(n-k+1, H)
$$

Further, every extremal graph is of the form $K_{k-1}+H_{\mathrm{Ex}}$ for some $H_{\mathrm{Ex}} \in \operatorname{Ex}(n-k+1, H)$.

Future Directions

$17 / 25$
College of Humanities and Sciences

Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we determine ex $(n, k \cdot H)$?

Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we determine $\operatorname{ex}(n, k \cdot H)$?

Question \#2

For what other graphs is the construction in this section extremal?

Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we determine $\operatorname{ex}(n, k \cdot H)$?

Question \#2

For what other graphs is the construction in this section extremal?

Question \#3

Which classes of graphs satisfy the smoothness conditions are rough bounds needed in our proof? (Since for these graphs our methods apply directly!!)

Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we determine $\operatorname{ex}(n, k \cdot H)$?

Question \#2

For what other graphs is the construction in this section extremal?

Question \#3

Which classes of graphs satisfy the smoothness conditions are rough bounds needed in our proof? (Since for these graphs our methods apply directly!!)

Part 3: Rainbow Turán Numbers

College of Humanities and Sciences

What if I like coloring?!

Let's restate the extremal problem slightly:

What if I like coloring?!

Let's restate the extremal problem slightly:

Definition

A graph G is H-saturated if it is H-free, but for every e $\notin E(G)$, the graph $G+e$ contains a copy of H.

What if I like coloring?!

Let's restate the extremal problem slightly:

Definition

A graph G is H-saturated if it is H-free, but for every e $\notin E(G)$, the graph $G+e$ contains a copy of H.(i.e., G is maximally H-free).

What if I like coloring?!

Let's restate the extremal problem slightly:

Definition

A graph G is H-saturated if it is H-free, but for every e $\notin E(G)$, the graph $G+e$ contains a copy of H.(i.e., G is maximally H-free).

Then,

$$
\operatorname{ex}(n, H)=\max \{\|G\|: G \text { is an } n \text { vertex } H \text {-saturated graph }\}
$$

Let's add those colors...

Definition

Given an edge coloring $\chi^{\prime}: E(G) \rightarrow[k]$, we say that a copy $H \subseteq G$ is rainbow if $\chi^{\prime}(e) \neq \chi^{\prime}(f)$ for any $e, f \in E(H)$.

Let's add those colors...

Definition

Given an edge coloring $\chi^{\prime}: E(G) \rightarrow[k]$, we say that a copy $H \subseteq G$ is rainbow if $\chi^{\prime}(e) \neq \chi^{\prime}(f)$ for any $e, f \in E(H)$.

Definition

G is H-rainbow-saturated if there is a proper edge coloring of G which is rainbow- H-free, but for every $e \notin E(G)$ we have that every proper edge coloring of $G+e$ contains a rainbow copy of H.

Let's add those colors...

Definition

Given an edge coloring $\chi^{\prime}: E(G) \rightarrow[k]$, we say that a copy $H \subseteq G$ is rainbow if $\chi^{\prime}(e) \neq \chi^{\prime}(f)$ for any $e, f \in E(H)$.

Definition

G is H-rainbow-saturated if there is a proper edge coloring of G which is rainbow- H-free, but for every $e \notin E(G)$ we have that every proper edge coloring of $G+e$ contains a rainbow copy of H.

Now we're ready...

Then as before, we can define the rainbow Turán number:
$\operatorname{ex}^{*}(n, H)=\max \{\|G\|: G$ is an n vertex H-rainbow-saturated graph $\}$

Now we're ready...

Then as before, we can define the rainbow Turán number:
$\operatorname{ex}^{*}(n, H)=\max \{\|G\|: G$ is an n vertex H-rainbow-saturated graph $\}$
Studied sporadically, and then studied in depth by Keevash, Mubayi, Sudakov and Verstraëte (2007).

Some results...

- $\operatorname{ex}^{*}(n, H) \geq \operatorname{ex}(n, H)$
- $\mathrm{ex}^{*}(n, H) \geq \operatorname{ex}(n, H)$ (if you have no copies of H, then you have no rainbow copy of H).
- $\mathrm{ex}^{*}(n, H) \geq \operatorname{ex}(n, H)$ (if you have no copies of H, then you have no rainbow copy of H).
- $\operatorname{ex}^{*}(n, H)=(1+o(1)) \operatorname{ex}(n, H)$, whenever $\chi(H) \geq 3$. (KMSV07)
- $\mathrm{ex}^{*}(n, H) \geq \operatorname{ex}(n, H)$ (if you have no copies of H, then you have no rainbow copy of H).
- $\operatorname{ex}^{*}(n, H)=(1+o(1)) \operatorname{ex}(n, H)$, whenever $\chi(H) \geq 3$. (KMSV07)
- So, what about bipartite graphs? (again!)

Degenerate rainbows...

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$.
* k edges, $k+1$ vertices

Degenerate rainbows...

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
* k edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$.
* k edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
* k edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$.

[^0]A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$. (KMSV07 - matches non-rainbow order of magnitude, but different constant!!)
* k edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$. (KMSV07 - matches non-rainbow order of magnitude, but different constant!!)
- $\frac{k}{2} n \leq \operatorname{ex}^{*}\left(n, P_{k+1}\right) \leq\left\lfloor\frac{3 k-1}{2}\right\rfloor n$.* (Johnston, Palmer, Sarkar '17)

[^1]A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$. (KMSV07 - matches non-rainbow order of magnitude, but different constant!!)
- $\frac{k}{2} n \leq \operatorname{ex}^{*}\left(n, P_{k+1}\right) \leq\left\lfloor\frac{3 k-1}{2}\right\rfloor n$.* (Johnston, Palmer, Sarkar '17)
- Improved to ex* $\left.n, P_{k+1}\right)<\left(\frac{9 k}{7}+2\right) n$ (Ergemlidze, Győri, Methuku '18)
* k edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$. (KMSV07 - matches non-rainbow order of magnitude, but different constant!!)
- $\frac{k}{2} n \leq \operatorname{ex}^{*}\left(n, P_{k+1}\right) \leq\left\lfloor\frac{3 k-1}{2}\right\rfloor n$.* (Johnston, Palmer, Sarkar '17)
- Improved to ex* $\left.n, P_{k+1}\right)<\left(\frac{9 k}{7}+2\right) n$ (Ergemlidze, Győri, Methuku '18)
- Known exactly for forests of stars, and $P_{4} \ldots$
${ }^{*} k$ edges, $k+1$ vertices

A few results exist...

- $\operatorname{ex}^{*}\left(n, K_{s, t}\right)=O\left(n^{1 / s}\right)$. (KMSV07, same as non-rainbow upper bound!)
- $\mathrm{ex}^{*}\left(n, C_{2 k}\right)=\Omega\left(n^{1+1 / k}\right)$. (KMSV07, conjectured to be correct order; related to a problem in additive number theory, and likely hard)
- $\mathrm{ex}^{*}\left(n, C_{6}\right)=\Theta\left(n^{4 / 3}\right)$. (KMSV07 - matches non-rainbow order of magnitude, but different constant!!)
- $\frac{k}{2} n \leq \operatorname{ex}^{*}\left(n, P_{k+1}\right) \leq\left\lfloor\frac{3 k-1}{2}\right\rfloor n$.* (Johnston, Palmer, Sarkar '17)
- Improved to ex* $\left.n, P_{k+1}\right)<\left(\frac{9 k}{7}+2\right) n$ (Ergemlidze, Győri, Methuku '18)
- Known exactly for forests of stars, and $P_{4} \ldots$
${ }^{*} k$ edges, $k+1$ vertices

Virtually everything is open for bipartite graphs! Prove anything!

Virtually everything is open for bipartite graphs! Prove anything!
-What is correct for paths?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?
- Other simple bipartite graph classes?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?
- Other simple bipartite graph classes?
- What about rainbow Turán numbers for disjoint copies of graphs?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?
- Other simple bipartite graph classes?
- What about rainbow Turán numbers for disjoint copies of graphs?
- Can we combine with generalized Turán numbers?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?
- Other simple bipartite graph classes?
- What about rainbow Turán numbers for disjoint copies of graphs?
- Can we combine with generalized Turán numbers?
- Could we restrict the colorings in a different way?

Virtually everything is open for bipartite graphs! Prove anything!

- What is correct for paths?
- What about cycles?
- Other simple bipartite graph classes?
- What about rainbow Turán numbers for disjoint copies of graphs?
- Can we combine with generalized Turán numbers?
- Could we restrict the colorings in a different way?
- DO MATH, HAVE FUN!

VCU is actively looking for graduate students in Discrete Math! http://math.vcu.edu/

- Ghidewon Abay-Asmeron (topological GT)
- Moa Apagodu (enumerative/algebraic comb.)
- Neal Bushaw (extremal/probablistic comb. and GT)
- David Chan (discrete dynamical systems)
- Dan Cranston (graph coloring, structural GT)
- Richard Hammack (algebraic GT)
- Glenn Hurlbert (extremal set theory, comb., GT)
- Craig Larson (automated conjecturing, GT)
- Dewey Taylor (GT, algebraic techniques)

THANK YOU!!

[^0]: * k edges, $k+1$ vertices

[^1]: * k edges, $k+1$ vertices

