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The Forbidden Subgraph Problem

The setup...
Fix a graph H

(small), and consider an arbitrary order n graph G
(large).

The Question:

If I tell you only that G contains no subgraph isomorphic to H,
what can you say about G?
(We say G is H-free, or that H is forbidden in G.)

The Extremal Question:

Given a graph H, how many edges can an n-vertex H-free graph
contain?
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A Little More Formal

Definition

Given a graph H, the extremal number, ex(n,H), is the maximum
number of edges among all n-vertex H-free graphs:

ex(n,H) = max{|E(G)| : G is H-free, |V (G)| = n},

Ex(n,H) = {G : G is H-free, |V (G)| = n, |E(G)| = ex(n,H)}.

We’ll use HEx to represent some H ∈ Ex(n,H).
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Classical Theorems

Let’s consider K3 as our forbidden graph.

Mantel, 1907

ex(n,K3) =

⌊
n2

4

⌋
=
⌊n

2

⌋ ⌈n
2

⌉
,

Ex(n,K3) = Kbn/2c,dn/2e.

...and generalize to larger complete graphs.

Turán, 1941

We denote by Tn,r the Turán Graph, which is a complete r-partite
graph on n vertices with all parts nearly equal sized. Then,

ex(n,Kr+1) = |E(T (n, r))| ≤
(

1− 1

r

)(
n

2

)
.
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Recent Extension

What if we let the forbidden graph grow with n?

Balogh, B., Collares Neto, Liu, Morris, Sharifzadeh

Let r = r(n) ∈ N0 be a function satisfying r ≤ (log n)1/4 for every
n ∈ N. Then almost all Kr+1-free graphs on n vertices are
r-partite.

(Extends recent work of Kolaitis, Prömel, Rothschild)

Further directions...

I What happens if r grows faster?

I Can we do similar things forbidding other growing families of
graphs?
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Classical Theorems (cont.)

Erdős-Stone, 1946

For any (r + 1)-chromatic graph H,

ex(n,H) =

(
1− 1

r
+ o (1)

)(
n

2

)

Note:

Erdős-Stone gives very little information about forbidding bipartite
graphs!
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Part 2: Multiple Copies
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A Generalization

A New Question:

What if we allow a few copies of H, but not more?

Slightly More Formal:

How many edges can an n-vertex graph contain, given that it
doesn’t contain k vertex disjoint copies of H?
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Some More Notation

Definition

For k ∈ N and a graph H, we use k ·H to denote k vertex disjoint
copies of H.

Definition

For graphs G, H, we use G+H to denote the join of G and H;
that is,

V (G+H) = V (G) ∪ V (H)

E(G+H) = E(G) ∪ E(H) ∪ (V (G)× V (H))
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Revenge of ES46

Erdős-Stone, 1946 (again)

For any (r + 1)-chromatic graph H,

ex(n,H) =

(
1− 1

r
+ o (1)

)(
n

2

)

So for graphs of chromatic number at least 3, the extremal
numbers for multiple copies do not change (asymptotically). But
what about bipartite graphs?

A Simple Construction

For any HEx ∈ Ex(n− k + 1, H), Kk−1 +HEx is a k ·H-free
graph on n vertices.
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But where is this construction extremal?

Gorgol, 2011

Let P` denote the path on ` vertices, and Ms denote the (nearly)
perfect matching on s vertices. Then for k = 2, 3 and n sufficiently
large,

ex(n, k · P3) =

(
k − 1

2

)
+ (k − 1)(n− k + 1) +

⌊
n− k + 1

2

⌋
,

Ex(n, k · P3) = Kk−1 +Mn−k+1 = Kk−1 +HEx.

B.-Kettle ’11

The above is correct for all k and all n ≥ 7k.(Yuan-Zhang ’17: all
k!!)
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Longer Paths

The hope here was that the structure extremal for a single copy of
H would extend to k ·H using Kk−1 +Hex, but...

B.-Kettle

For all k ≥ 2, ` ≥ 4, and n ≥ 2`+ 2k`(
⌈
`
2

⌉
+ 1)

( `
b `2c
)
,

ex(n, k ·P`) =

(
k
⌊
`
2

⌋
− 1

2

)
+(k

⌊
`

2

⌋
−1)(n−k

⌊
`

2

⌋
+1)+1` is odd.

Here, the extremal graph is Kkb `2c−1 + En−kb `2c+1 (with a single

edge added if ` is odd), and this is not Kk−1 +HEx!
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A New Class of Graphs

Where is the given construction extremal?

Definition

A graph H is forestable if it meets the following conditions:

1. H is bipartite,

2. H contains a cycle,

3. There is a vertex v ∈ V (H) such that H[V (H) \ v] is a forest.
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Forestable Graphs

B.-Kettle

For a forestable graph H, k ∈ N, and n sufficiently large,

ex(n, k ·H) =

(
k − 1

2

)
+ (k − 1)(n− k + 1) + ex(n− k + 1, H).

Further, every extremal graph is of the form Kk−1 +HEx for some
HEx ∈ Ex(n− k + 1, H).
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Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we
determine ex(n, k ·H)?

Question #2

For what other graphs is the construction in this section extremal?

Question #3

Which classes of graphs satisfy the smoothness conditions are
rough bounds needed in our proof? (Since for these graphs our
methods apply directly!!)

17/25



Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we
determine ex(n, k ·H)?

Question #2

For what other graphs is the construction in this section extremal?

Question #3

Which classes of graphs satisfy the smoothness conditions are
rough bounds needed in our proof? (Since for these graphs our
methods apply directly!!)

17/25



Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we
determine ex(n, k ·H)?

Question #2

For what other graphs is the construction in this section extremal?

Question #3

Which classes of graphs satisfy the smoothness conditions are
rough bounds needed in our proof? (Since for these graphs our
methods apply directly!!)

17/25



Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we
determine ex(n, k ·H)?

Question #2

For what other graphs is the construction in this section extremal?

Question #3

Which classes of graphs satisfy the smoothness conditions are
rough bounds needed in our proof? (Since for these graphs our
methods apply directly!!)

17/25



Future Directions

Big Question

Given the extremal function for a bipartite graph H, how can we
determine ex(n, k ·H)?

Question #2

For what other graphs is the construction in this section extremal?

Question #3

Which classes of graphs satisfy the smoothness conditions are
rough bounds needed in our proof? (Since for these graphs our
methods apply directly!!)

17/25



Part 3: Rainbow Turán Numbers
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What if I like coloring?!

Let’s restate the extremal problem slightly:

Definition

A graph G is H-saturated if it is H-free, but for every e 6∈ E(G),
the graph G+ e contains a copy of H.(i.e., G is maximally H-free).

Then,

ex(n,H) = max{‖G‖ : G is an n vertex H-saturated graph}.
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Let’s add those colors...

Definition

Given an edge coloring χ′ : E(G)→ [k], we say that a copy
H ⊆ G is rainbow if χ′(e) 6= χ′(f) for any e, f ∈ E(H).

Definition

G is H-rainbow-saturated if there is a proper edge coloring of G
which is rainbow-H-free, but for every e 6∈ E(G) we have that
every proper edge coloring of G+ e contains a rainbow copy of H.
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Now we’re ready...

Then as before, we can define the rainbow Turán number:

ex∗(n,H) = max{‖G‖ : G is an n vertex H-rainbow-saturated graph}.

Studied sporadically, and then studied in depth by Keevash,
Mubayi, Sudakov and Verstraëte (2007).
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Some results...

I ex∗(n,H) ≥ ex(n,H)

(if you have no copies of H, then you
have no rainbow copy of H).

I ex∗(n,H) = (1 + o(1)) ex(n,H), whenever χ(H) ≥ 3.
(KMSV07)

I So, what about bipartite graphs? (again!)
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Degenerate rainbows...

A few results exist...

I ex∗(n,Ks,t) = O(n1/s).

(KMSV07, same as non-rainbow
upper bound!)

I ex∗(n,C2k) = Ω(n1+1/k). (KMSV07, conjectured to be
correct order; related to a problem in additive number theory,
and likely hard)

I ex∗(n,C6) = Θ(n4/3). (KMSV07 – matches non-rainbow
order of magnitude, but different constant!!)

I k
2n ≤ ex∗(n, Pk+1) ≤

⌊
3k−1
2

⌋
n.∗ (Johnston, Palmer, Sarkar

’17)

I Improved to ex∗(n, Pk+1) <
(
9k
7 + 2

)
n (Ergemlidze, Győri,

Methuku ’18)

I Known exactly for forests of stars, and P4...

∗k edges, k + 1 vertices
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And then...?

Virtually everything is open for bipartite graphs! Prove
anything!

I What is correct for paths?

I What about cycles?

I Other simple bipartite graph classes?

I What about rainbow Turán numbers for disjoint copies of
graphs?

I Can we combine with generalized Turán numbers?

I Could we restrict the colorings in a different way?

I DO MATH, HAVE FUN!
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