

Recognizing when bicoset graphs are X-joins.

7th Annual Mississippi Discrete Mathematics Workshop

Rachel V. Barber

October 26-27 2019

Mississippi State University Department of Mathematics and Statistics

Let *G* be a group, let *L* and *R* be subgroups of *G*, and let *S* be a union of double cosets of *R* and *L* in *G*, namely, $S = \bigcup_i Rs_i L$. Define a bipartite graph $\Gamma = B(G, L, R, S)$ with bipartition $V(\Gamma) = G/L \cup G/R$ and edge set $E(\Gamma) = \{\{gL, gsR\} : g \in G, s \in S\}$. This graph is called the **bi-coset graph** with respect to *L*, *R*, and *S*. We call *S* the **connection set** of Γ .

Let *G* be a group, let *L* and *R* be subgroups of *G*, and let *S* be a union of double cosets of *R* and *L* in *G*, namely, $S = \bigcup_i Rs_i L$. Define a bipartite graph $\Gamma = B(G, L, R, S)$ with bipartition $V(\Gamma) = G/L \cup G/R$ and edge set $E(\Gamma) = \{\{gL, gsR\} : g \in G, s \in S\}$. This graph is called the **bi-coset graph** with respect to *L*, *R*, and *S*. We call *S* the **connection set** of Γ .

When the subgroups L and R are both the identity, we have a special case of bicoset graphs called a Haar graph, which is a bipartite analogue of a Cayley graph.

Let *G* be a group, let *L* and *R* be subgroups of *G*, and let *S* be a union of double cosets of *R* and *L* in *G*, namely, $S = \bigcup_i Rs_i L$. Define a bipartite graph $\Gamma = B(G, L, R, S)$ with bipartition $V(\Gamma) = G/L \cup G/R$ and edge set $E(\Gamma) = \{\{gL, gsR\} : g \in G, s \in S\}$. This graph is called the **bi-coset graph** with respect to *L*, *R*, and *S*. We call *S* the **connection set** of Γ .

When the subgroups L and R are both the identity, we have a special case of bicoset graphs called a Haar graph, which is a bipartite analogue of a Cayley graph.

Definition

Let G be a group and $S \subseteq G$. Define the **Haar graph**, denoted Haar(G, S) with connection set S to be the graph with vertex set $\mathbb{Z}_2 \times G$ and edge set $\{(\{0, g\}, (1, gs)\} : g \in G, s \in S\}$.

Bicoset and Haar Graphs

 $\mathsf{Haar}(\mathbb{Z}_7,\{1,2,4\})$ AKA The Heawood Graph

Let Γ be a bi-coset graph $B(G, H_0, H_1, S)$ where the left partition B_0 consists of the left cosets of H_0 and the right partition B_1 consists of the left cosets of H_1 . Let $H_i \leq K_i \leq G$, i = 0, 1. Define the **join-partition of** $V(\Gamma)$ with respect to K_0 and K_1 , denoted $\mathcal{P}(K_0, K_1)$, of the vertices of Γ as follows:

- Let P_i be the partition of B_i that consists of the left cosets of K_i in G. Note P_i is a block system of G with its action on B_i by left multiplication, i = 0, 1.
- The partition P(K₀, K₁) of V(Γ) is P = P₀ ∪ P₁. This partition of the vertices of Γ does not necessarily form a block system of Aut(Γ) as Γ may not be vertex-transitive.

 \mathcal{P} is a refinement of the natural partition \mathcal{B} , where \mathcal{B} partitions $V(\Gamma)$ into B_0 and B_1 .

 \mathcal{P} is a refinement of the natural partition \mathcal{B} , where \mathcal{B} partitions $V(\Gamma)$ into B_0 and B_1 .

Lemma

Let $\Gamma = B(G, H_0, H_1, S)$ and \mathcal{P} a partition of $V(\Gamma)$ that refines \mathcal{B} . Then \mathcal{P} is a G-invariant partition of $V(\Gamma)$ under the left multiplication action of G if and only if there exists $H_0 \leq K_0 \leq G$ and $H_1 \leq K_1 \leq G$ such that \mathcal{P} is the (K_0, K_1) -join partition of $V(\Gamma)$.

Let X be a graph, $Y = \{Y_x : x \in X\}$ a collection of graphs indexed by V(X). By the X-join of Y is meant the graph $Z = \bigvee(X, Y)$ with vertex set

$$V(Z) = \{(x, y) : x \in X, y \in Y_x\}$$

and edge set

 $E(Z) = \{\{(x,y), (x',y')\} : \{x,x'\} \in E(X) \text{ or } x = x' \text{ and } \{y,y'\} \in E(Y_x)\}.$

To construct the X-join of Y:

- 1. Replacing each vertex of X by the graph $Y_x \in Y$.
- 2. Insert either all or none of the possible edges between vertices of Y_u and Y_v depending on whether or not there is an edge between u and v in X.

If the Y_x 's are all isomorphic, then the X-join of $\{Y_x : x \in X\}$ is the wreath product $X \wr Y$, where $Y \cong Y_x$ for all $x \in X$.

Example

Let $X = K_2$, the complete graph on 2 vertices, and let $Y = \{\overline{K}_2, K_3\}$.

Example

Let $X = K_2$, the complete graph on 2 vertices, and let $Y = \{\overline{K}_2, K_3\}$.

Replace each vertex of K_2 with graphs from Y, and draw edges:

Example

Let $X = K_2$, the complete graph on 2 vertices, and let $Y = \{\overline{K}_2, K_3\}$.

Replace each vertex of K_2 with graphs from Y, and draw edges:

Example

Let $X = K_2$, the complete graph on 2 vertices, and let $Y = \{\overline{K}_2, K_3\}$.

Replace each vertex of K_2 with graphs from Y, and draw edges:

Let Ω be a set, and \mathcal{P} a partition of Ω . Let Γ be a digraph with vertex set Ω . Define the **quotient digraph** of Γ with respect to \mathcal{P} , denoted Γ/\mathcal{P} , by $V(\Gamma/\mathcal{P}) = \mathcal{P}$ and $(P_1, P_2) \in A(\Gamma/\mathcal{P})$ if and only if $(p_1, p_2) \in A(\Gamma)$ for some $p_1 \in P_1$ and $p_2 \in P_2$.

Theorem

Let G be a group, $H_0 \leq K_0 \leq G$, $H_1 \leq K_1 \leq G$, $m_0 = [K_0 : H_0]$, and $m_1 = [K_1 : H_1]$. Let $S \subseteq G$ such that S is a union of (H_0, H_1) -double cosets in G, and $\Gamma = B(G, H_0, H_1, S)$. Let $X = \Gamma/\mathcal{P}$ where \mathcal{P} is the join-partition of Γ with respect to K_0 and K_1 , $Y_{g,i}$ be the empty graph on the left cosets of H_i contained in gK_i , and $Y = \{Y_{g,i} : g \in G, i \in \mathbb{Z}_2\}$. Then Γ is the X-join of Y if and only if whenever $P_0 \in \mathcal{P}_0$ and $P_1 \in \mathcal{P}_1$, then there is an edge $\{x_0, x_1\}$ from a vertex $x_0 \in P_0$ to a vertex $x_1 \in P_1$ if and only if every edge of the form $\{x_0, x_1\}$ with $x_0 \in P_0$ and $x_1 \in \mathcal{P}_1$ is contained in $E(\Gamma)$.

Remark: This theorem allows us to be able to recognize *X*-joins with complements of complete graphs from a graph theoretic point of view.

Theorem

Let $\Gamma = B(G, H_0, H_1, S)$ be a connected bi-coset graph, $H_i \leq K_i \leq G$, i = 0, 1, and $\mathcal{P} = \mathcal{P}(K_0, K_1)$ be the join-partition of $V(\Gamma)$ with respect to K_0 and K_1 . Let $X = \Gamma/\mathcal{P}$. For $gK_i \in \mathcal{P}$, let $Y_{g,i}$ the empty graph with vertex set gK_i , and let $Y = \{Y_{g,i} : g \in G, i \in \mathbb{Z}_2\}$. Then Γ is the X-join of Y if and only if S is a union of (K_0, K_1) -double cosets in G. If such a $K_0, K_1 \leq G$ exists, then

$$B(G, H_0, H_1, S) = \bigvee (\Gamma/\mathcal{P}, Y) \cong \bigvee (B(G/L, K_0/L, K_1/L, T), Y)$$

where $L = core_G(K_0) \cap core_G(K_1)$, and $T = \bigcup_{s \in S} (K_0/L)(sL)(K_1/L)$.

Remark: This theorem helps of identify when bicoset graphs are X-joins of empty graphs by looking at the connection set S. And, we identify what the X-join is in terms of another bicoset graph.

Example

Let $\Gamma = \text{Haar}(D_6, \{1, \tau, \rho, \tau\rho\}))$, where D_6 is the dihedral group with six elements. Note that *S* is exactly the double coset $\langle \tau \rangle \tau \langle \tau\rho \rangle$. Then by the previous theorem we know that Γ is isomorphic to an *X*-join of empty graphs, in this case $Y = \{\vec{K}_2, \vec{K}_2, \vec{K}_2, \vec{K}_2, \vec{K}_2, \vec{K}_2\}$ as the order of each coset is two. Thus, Γ is in fact a wreath product.

 $\mathsf{Haar}(D_6, \{1, \tau, \rho, \tau\rho\}) = \mathsf{B}(D_6, \langle \tau \rangle, \langle \tau\rho \rangle, T) \wr \bar{K}_2$

To do next: Finish up the results about the automorphism group. **Question:** When is a disconnected bicoset graph an X-join of graphs?