Recognizing when bicoset graphs are X-joins.

7th Annual Mississippi Discrete Mathematics Workshop

Rachel V. Barber
October 26-27 2019

Mississippi State University
Department of Mathematics and Statistics

Bicoset and Haar Graphs

Definition

Let G be a group, let L and R be subgroups of G, and let S be a union of double cosets of R and L in G, namely, $S=\bigcup_{i} R s_{i} L$. Define a bipartite graph $\Gamma=\mathrm{B}(G, L, R, S)$ with bipartition $V(\Gamma)=G / L \cup G / R$ and edge set $E(\Gamma)=\{\{g L, g s R\}: g \in G, s \in S\}$. This graph is called the bi-coset graph with respect to L, R, and S. We call S the connection set of Γ.

Bicoset and Haar Graphs

Definition

Let G be a group, let L and R be subgroups of G, and let S be a union of double cosets of R and L in G, namely, $S=\bigcup_{i} R s_{i} L$. Define a bipartite graph $\Gamma=\mathrm{B}(G, L, R, S)$ with bipartition $V(\Gamma)=G / L \cup G / R$ and edge set $E(\Gamma)=\{\{g L, g s R\}: g \in G, s \in S\}$. This graph is called the bi-coset graph with respect to L, R, and S. We call S the connection set of Γ.

When the subgroups L and R are both the identity, we have a special case of bicoset graphs called a Haar graph, which is a bipartite analogue of a Cayley graph.

Bicoset and Haar Graphs

Definition

Let G be a group, let L and R be subgroups of G, and let S be a union of double cosets of R and L in G, namely, $S=\bigcup_{i} R s_{i} L$. Define a bipartite graph $\Gamma=\mathrm{B}(G, L, R, S)$ with bipartition $V(\Gamma)=G / L \cup G / R$ and edge set $E(\Gamma)=\{\{g L, g s R\}: g \in G, s \in S\}$. This graph is called the bi-coset graph with respect to L, R, and S. We call S the connection set of Γ.

When the subgroups L and R are both the identity, we have a special case of bicoset graphs called a Haar graph, which is a bipartite analogue of a Cayley graph.

Definition

Let G be a group and $S \subseteq G$. Define the Haar graph, denoted $\operatorname{Haar}(G, S)$ with connection set S to be the graph with vertex set $\mathbb{Z}_{2} \times G$ and edge set $\{(\{0, g),(1, g s)\}: g \in G, s \in S\}$.

Bicoset and Haar Graphs

$\operatorname{Haar}\left(\mathbb{Z}_{7},\{1,2,4\}\right)$ AKA The Heawood Graph

Join-Partition

Definition

Let Γ be a bi-coset graph $\mathrm{B}\left(G, H_{0}, H_{1}, S\right)$ where the left partition B_{0} consists of the left cosets of H_{0} and the right partition B_{1} consists of the left cosets of H_{1}. Let $H_{i} \leq K_{i} \leq G, i=0,1$. Define the join-partition of $V(\Gamma)$ with respect to K_{0} and K_{1}, denoted $\mathcal{P}\left(K_{0}, K_{1}\right)$, of the vertices of Γ as follows:

1. Let \mathcal{P}_{i} be the partition of B_{i} that consists of the left cosets of K_{i} in G. Note \mathcal{P}_{i} is a block system of G with its action on B_{i} by left multiplication, $i=0,1$.
2. The partition $\mathcal{P}\left(K_{0}, K_{1}\right)$ of $V(\Gamma)$ is $\mathcal{P}=\mathcal{P}_{0} \cup \mathcal{P}_{1}$. This partition of the vertices of Γ does not necessarily form a block system of Aut (Γ) as Γ may not be vertex-transitive.

Join-Partition

\mathcal{P} is a refinement of the natural partition \mathcal{B}, where \mathcal{B} partitions $V(\Gamma)$ into B_{0} and B_{1}.

Join-Partition

\mathcal{P} is a refinement of the natural partition \mathcal{B}, where \mathcal{B} partitions $V(\Gamma)$ into B_{0} and B_{1}.

Lemma

Let $\Gamma=B\left(G, H_{0}, H_{1}, S\right)$ and \mathcal{P} a partition of $V(\Gamma)$ that refines \mathcal{B}. Then \mathcal{P} is a G-invariant partition of $V(\Gamma)$ under the left multiplication action of G if and only if there exists $H_{0} \leq K_{0} \leq G$ and $H_{1} \leq K_{1} \leq G$ such that \mathcal{P} is the $\left(K_{0}, K_{1}\right)$-join partition of $V(\Gamma)$.

X-joins

Definition

Let X be a graph, $Y=\left\{Y_{x}: x \in X\right\}$ a collection of graphs indexed by $V(X)$. By the X-join of Y is meant the graph $Z=\bigvee(X, Y)$ with vertex set

$$
V(Z)=\left\{(x, y): x \in X, y \in Y_{x}\right\}
$$

and edge set
$E(Z)=\left\{\left\{(x, y),\left(x^{\prime}, y^{\prime}\right)\right\}:\left\{x, x^{\prime}\right\} \in E(X)\right.$ or $x=x^{\prime}$ and $\left.\left\{y, y^{\prime}\right\} \in E\left(Y_{x}\right)\right\}$.

X-joins

To construct the X-join of Y :

1. Replacing each vertex of X by the graph $Y_{x} \in Y$.
2. Insert either all or none of the possible edges between vertices of Y_{u} and Y_{v} depending on whether or not there is an edge between u and v in X.

If the Y_{x} 's are all isomorphic, then the X-join of $\left\{Y_{x}: x \in X\right\}$ is the wreath product $X \backslash Y$, where $Y \cong Y_{x}$ for all $x \in X$.

X-joins

Example

Let $X=K_{2}$, the complete graph on 2 vertices, and let $Y=\left\{\bar{K}_{2}, K_{3}\right\}$.

$$
\text { Start with } K_{2} \text { : }
$$

X-joins

Example

Let $X=K_{2}$, the complete graph on 2 vertices, and let $Y=\left\{\bar{K}_{2}, K_{3}\right\}$.

$$
\text { Start with } K_{2} \text { : }
$$

Replace each vertex of K_{2} with graphs from Y, and draw edges:

X-joins

Example

Let $X=K_{2}$, the complete graph on 2 vertices, and let $Y=\left\{\bar{K}_{2}, K_{3}\right\}$.

$$
\text { Start with } K_{2} \text { : }
$$

Replace each vertex of K_{2} with graphs from Y, and draw edges:

X-joins

Example

Let $X=K_{2}$, the complete graph on 2 vertices, and let $Y=\left\{\bar{K}_{2}, K_{3}\right\}$.

$$
\text { Start with } K_{2} \text { : }
$$

Replace each vertex of K_{2} with graphs from Y, and draw edges:

Quotient Graph

Definition
Let Ω be a set, and \mathcal{P} a partition of Ω. Let Γ be a digraph with vertex set Ω. Define the quotient digraph of Γ with respect to \mathcal{P}, denoted Γ / \mathcal{P}, by $V(\Gamma / \mathcal{P})=\mathcal{P}$ and $\left(P_{1}, P_{2}\right) \in A(\Gamma / \mathcal{P})$ if and only if $\left(p_{1}, p_{2}\right) \in A(\Gamma)$ for some $p_{1} \in P_{1}$ and $p_{2} \in P_{2}$.

When bicoset graphs are X -joins

Theorem
Let G be a group, $H_{0} \leq K_{0} \leq G, H_{1} \leq K_{1} \leq G, m_{0}=\left[K_{0}: H_{0}\right]$, and $m_{1}=\left[K_{1}: H_{1}\right]$. Let $S \subseteq G$ such that S is a union of $\left(H_{0}, H_{1}\right)$-double cosets in G, and $\Gamma=B\left(G, H_{0}, H_{1}, S\right)$. Let $X=\Gamma / \mathcal{P}$ where \mathcal{P} is the join-partition of Γ with respect to K_{0} and $K_{1}, Y_{g, i}$ be the empty graph on the left cosets of H_{i} contained in $g K_{i}$, and $Y=\left\{Y_{g, i}: g \in G, i \in \mathbb{Z}_{2}\right\}$. Then Γ is the X-join of Y if and only if whenever $P_{0} \in \mathcal{P}_{0}$ and $P_{1} \in \mathcal{P}_{1}$, then there is an edge $\left\{x_{0}, x_{1}\right\}$ from a vertex $x_{0} \in P_{0}$ to a vertex $x_{1} \in P_{1}$ if and only if every edge of the form $\left\{x_{0}, x_{1}\right\}$ with $x_{0} \in P_{0}$ and $x_{1} \in P_{1}$ is contained in $E(\Gamma)$.

Remark: This theorem allows us to be able to recognize X-joins with complements of complete graphs from a graph theoretic point of view.

When bicoset graphs are X -joins

Theorem

Let $\Gamma=B\left(G, H_{0}, H_{1}, S\right)$ be a connected bi-coset graph, $H_{i} \leq K_{i} \leq G$, $i=0,1$, and $\mathcal{P}=\mathcal{P}\left(K_{0}, K_{1}\right)$ be the join-partition of $V(\Gamma)$ with respect to K_{0} and K_{1}. Let $X=\Gamma / \mathcal{P}$. For $g K_{i} \in \mathcal{P}$, let $Y_{g, i}$ the empty graph with vertex set $g K_{i}$, and let $Y=\left\{Y_{g, i}: g \in G, i \in \mathbb{Z}_{2}\right\}$. Then Γ is the X-join of Y if and only if S is a union of $\left(K_{0}, K_{1}\right)$-double cosets in G. If such a $K_{0}, K_{1} \leq G$ exists, then

$$
B\left(G, H_{0}, H_{1}, S\right)=\bigvee(\Gamma / \mathcal{P}, Y) \cong \bigvee\left(B\left(G / L, K_{0} / L, K_{1} / L, T\right), Y\right)
$$

where $L=\operatorname{core}_{G}\left(K_{0}\right) \cap \operatorname{core}_{G}\left(K_{1}\right)$, and $T=\bigcup_{s \in S}\left(K_{0} / L\right)(s L)\left(K_{1} / L\right)$.
Remark: This theorem helps of identify when bicoset graphs are X-joins of empty graphs by looking at the connection set S. And, we identify what the X-join is in terms of another bicoset graph.

Example

Example

Let $\left.\Gamma=\operatorname{Haar}\left(D_{6},\{1, \tau, \rho, \tau \rho\}\right)\right)$, where D_{6} is the dihedral group with six elements. Note that S is exactly the double coset $\langle\tau\rangle \tau\langle\tau \rho\rangle$. Then by the previous theorem we know that Γ is isomorphic to an X-join of empty graphs, in this case $Y=\left\{\bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}, \bar{K}_{2}\right\}$ as the order of each coset is two. Thus, Γ is in fact a wreath product.
$\operatorname{Haar}\left(D_{6},\{1, \tau, \rho, \tau \rho\}\right)=\mathbf{B}\left(D_{6},\langle\tau\rangle,\langle\tau \rho\rangle, T\right) \imath \bar{K}_{2}$

Next Steps

To do next: Finish up the results about the automorphism group.
Question: When is a disconnected bicoset graph an X-join of graphs?

