Towards an excluded-minor characterization of the Hydra-5 matroids

Ben Clark

Louisiana State University

Matroids

- Matroid theory is the study of dependence.
- Some matroids come from vector spaces or graphs, but some do not.

Matroids

An example

ightharpoonup Consider the following matrix over the field GF(5).

$$\begin{bmatrix}
a & b & c & d & e \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 3
\end{bmatrix}$$

- ▶ Let \mathcal{I} be the collection of linearly independent subsets of $\{a,b,c,d,e\}$.
- ▶ Then $(\{a, b, c, d, e\}, \mathcal{I})$ is a matroid, $U_{2,5}$.

A geometric representation of the matroid $U_{2,5}$

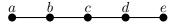
▶ The matroid $U_{2,5}$ is said to be *represented* by the following matrix over the field GF(5).

$$\begin{bmatrix}
a & b & c & d & e \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 2 & 3
\end{bmatrix}$$

which is more compactly written as

$$\begin{array}{ccc}
c & d & e \\
a & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix}
\end{array}$$

A geometric representation of the matroid $U_{2,5}$ is the 5-point line.



Characterizing matroids with matrix representations

► (Whitney, 1935) "The fundamental question of completely characterizing systems which represent matrices is left unsolved."

Minors

▶ **Deletion**: $U_{2,5} \backslash e$

▶ Contraction: $U_{2,5}/e$

▶ **Minor**: Sequence of deletions and contractions.

Minor order

 \blacktriangleright The class of $\mathbb{F}\text{-representable}$ matroids is minor-closed.

Minors Deletion

▶ $U_{2,5}$ with GF(5)-representation:

$$\begin{array}{cccc}
c & d & e \\
a & 1 & 1 & 1 \\
b & 1 & 2 & 3
\end{array}$$

• $U_{2,5}\backslash e$: remove the column e.

$$\begin{array}{ccc}
c & d \\
a & \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}
\end{array}$$

Minors

Contraction

▶ $U_{2,5}$ with GF(5)-representation:

$$\begin{bmatrix}
c & a & e \\
a & \begin{bmatrix} 1 & 1 & 1 \\
1 & 2 & 3
\end{bmatrix}$$

 $ightharpoonup U_{2,5}/e$: change basis to $\{b,e\}$ by 'pivoting'.

 \blacktriangleright then remove the row e.

Excluded minors

A matroid M is an **excluded minor** for a minor-closed class $\mathcal C$ if:

- ▶ $M \notin \mathcal{C}$; and
- ▶ Any minor of M is in C.

Excluded-minor characterizations

- ▶ (Tutte, 1958) One excluded minor for GF(2)-representability.
- ▶ (Bixby, 1979; Seymour, 1979) Four excluded minors for GF(3)-representability.
- ▶ (Geelen, Gerards, & Kapoor, 2000) Seven excluded minors for GF(4)-representability.

GF(5)-representable matroids

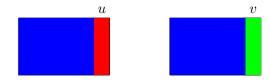
(Mayhew & Royle, 2008) At least 564 excluded minors for $\mathrm{GF}(5)$ -representability.

Inequivalent representations

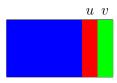
(Oxley, Vertigan, & Whittle, 1996) Up to six inequivalent representations over GF(5).

Deletion pair u, v

Use representations of $M \setminus u$ and $M \setminus v$

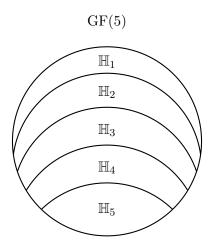


To build a candidate representation for ${\cal M}$



▶ \mathbb{H}_k -representable matroids are the $\mathrm{GF}(5)$ -representable matroids with at least k inequivalent representations.

GF(5)-representable matroids



 \mathbb{H}_5 -representable: GF(5)-representable matroids with at least five inequivalent representations.

Unique representability

Unique representability in \mathbb{H}_5 with a $U_{2,5}$ -minor and enough connectivity.

Gaining traction on the GF(5) problem

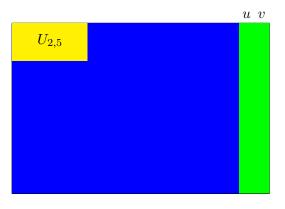
If an excluded minor M for \mathbb{H}_5 is \mathbb{H}_4 -representable, then we recover unique representability in \mathbb{H}_4 with an M-minor and enough connectivity.

Goal

► Find all of the excluded minors for the class of Hydra-5 matroids.

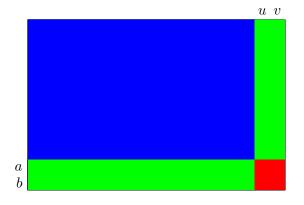
Another look at the candidate representation

Excluded minor M for \mathbb{H}_5 with a $U_{2,5}$ -minor.

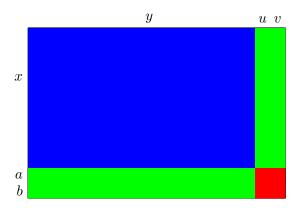


Incriminating set $\{a, b, u, v\}$

Certificate of non-representability.

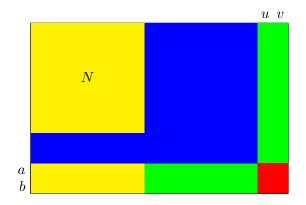


What about the other elements?



We lose the $U_{2,5}$ -minor or lose connectivity by removing x or y.

$U_{2,5}$ -fragile minor



For all $e \in N$, either $N \backslash e$ or N/e has no $U_{2,5}$ -minor.

To bound the excluded minor M

We need to know

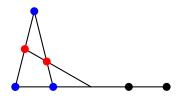
- ▶ How big is the $U_{2,5}$ -fragile minor?
- ► How many additional elements are needed to repair connectivity?

A natural question

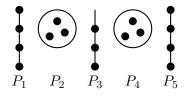
What is the structure of \mathbb{H}_5 -representable $U_{2,5}$ -fragile matroids?

Fan extensions

A fan extension of $U_{2,5}$:



Path extensions



(Oxley, Semple, & Vertigan, 2000) Generalized Δ -Y exchange.

Theorem

(Clark, Mayhew, Whittle, & Van Zwam, 2015)

The following statements are equivalent for a matroid M.

- (i) M is a $\{U_{2,5}, U_{3,5}\}$ -fragile \mathbb{H}_5 -representable matroid.
- (ii) (a) $|M| \leq 9$; or
 - (b) M is a member of a fan family; or
 - (c) M is a member of the path family.

To bound the excluded minor M

We need to know

- ▶ How big is the $U_{2,5}$ -fragile minor?
- ► How many additional elements are needed to repair connectivity?

Theorem (Clark, Oxley, Semple & Whittle, 2015)

Let M be an excluded minor for the class of \mathbb{H}_5 -representable matroids. If M has a pair of elements u,v such that $M\backslash u,v$ is 3-connected with a $U_{2,5}$ -minor, then at least one of the following holds.

- (i) M is "small"; or
- (ii) $M \setminus u, v$ is $U_{2,5}$ -fragile.

